Álvaro F. Fernández
University of Oviedo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Álvaro F. Fernández.
Molecular Cell | 2014
Guillermo Mariño; Federico Pietrocola; Tobias Eisenberg; Yongli Kong; Shoaib Ahmad Malik; Aleksandra Andryushkova; Sabrina Schroeder; Tobias Pendl; Alexandra Harger; Mireia Niso-Santano; Naoufal Zamzami; Marie Scoazec; Silvère Durand; David P. Enot; Álvaro F. Fernández; Isabelle Martins; Oliver Kepp; Laura Senovilla; Chantal Bauvy; Eugenia Morselli; Erika Vacchelli; Martin V. Bennetzen; Christoph Magnes; Frank Sinner; Thomas R. Pieber; Carlos López-Otín; Maria Chiara Maiuri; Patrice Codogno; Jens S. Andersen; Joseph A. Hill
Acetyl-coenzyme A (AcCoA) is a major integrator of the nutritional status at the crossroads of fat, sugar, and protein catabolism. Here we show that nutrient starvation causes rapid depletion of AcCoA. AcCoA depletion entailed the commensurate reduction in the overall acetylation of cytoplasmic proteins, as well as the induction of autophagy, a homeostatic process of self-digestion. Multiple distinct manipulations designed to increase or reduce cytosolic AcCoA led to the suppression or induction of autophagy, respectively, both in cultured human cells and in mice. Moreover, maintenance of high AcCoA levels inhibited maladaptive autophagy in a model of cardiac pressure overload. Depletion of AcCoA reduced the activity of the acetyltransferase EP300, and EP300 was required for the suppression of autophagy by high AcCoA levels. Altogether, our results indicate that cytosolic AcCoA functions as a central metabolic regulator of autophagy, thus delineating AcCoA-centered pharmacological strategies that allow for the therapeutic manipulation of autophagy.
Journal of Clinical Investigation | 2010
Guillermo Mariño; Álvaro F. Fernández; Sandra Cabrera; Yunxia W. Lundberg; Rubén Cabanillas; Francisco Rodríguez; Natalia Salvador-Montoliu; José A. Vega; A. Germanà; Antonio Fueyo; José M. P. Freije; Carlos López-Otín
Autophagy is an evolutionarily conserved process that is essential for cellular homeostasis and organismal viability in eukaryotes. However, the extent of its functions in higher-order processes of organismal physiology and behavior is still unknown. Here, we report that autophagy is essential for the maintenance of balance in mice and that its deficiency leads to severe balance disorders. We generated mice deficient in autophagin-1 protease (Atg4b) and showed that they had substantial systemic reduction of autophagic activity. Autophagy reduction occurred through defective proteolytic processing of the autophagosome component LC3 and its paralogs, which compromised the rate of autophagosome maturation. Despite their viability, Atg4b-null mice showed unusual patterns of behavior that are common features of inner ear pathologies. Consistent with this, Atg4b-null mice showed defects in the development of otoconia, organic calcium carbonate crystals essential for sense of balance (equilibrioception). Furthermore, these abnormalities were exacerbated in Atg5-/- mice, which completely lack the ability to perform autophagy, confirming that autophagic activity is necessary for otoconial biogenesis. Autophagy deficiency also led to impaired secretion and assembly of otoconial core proteins, thus hampering otoconial development. Taken together, these results describe an essential role for autophagy in inner ear development and equilibrioception and open new possibilities for understanding and treating human balance disorders, which are of growing relevance among the elderly population.
Proceedings of the National Academy of Sciences of the United States of America | 2010
Guillermo Mariño; Alejandro P. Ugalde; Álvaro F. Fernández; Fernando G. Osorio; Antonio Fueyo; José M. P. Freije; Carlos López-Otín
Zmpste24 (also called FACE-1) is a metalloproteinase involved in the maturation of lamin A, an essential component of the nuclear envelope. Zmpste24-deficient mice exhibit multiple defects that phenocopy human accelerated aging processes such as Hutchinson–Gilford progeria syndrome. In this work, we report that progeroid Zmpste24-/− mice present profound transcriptional alterations in genes that regulate the somatotroph axis, together with extremely high circulating levels of growth hormone (GH) and a drastic reduction in plasma insulin-like growth factor 1 (IGF-1). We also show that recombinant IGF-1 treatment restores the proper balance between IGF-1 and GH in Zmpste24-/− mice, delays the onset of many progeroid features, and significantly extends the lifespan of these progeroid animals. Our findings highlight the importance of IGF/GH balance in longevity and may be of therapeutic interest for devastating human progeroid syndromes associated with nuclear envelope abnormalities.
Journal of Molecular Medicine | 2012
Ramón María Alvargonzález Rodríguez; Covadonga Huidobro; Rocío G. Urdinguio; Cristina Mangas; Beatriz Soldevilla; Gemma Domínguez; Félix Bonilla; Álvaro F. Fernández; Mario F. Fraga
The bromodomain protein BRD4 is involved in cell proliferation and cell cycle progression, primarily through its role in acetylated chromatin-dependent regulation of transcription at targeted loci. Here, we show that BRD4 is frequently downregulated by aberrant promoter hypermethylation in human colon cancer cell lines and primary tumors. Ectopic re-expression of BRD4 in these colon cancer cell lines markedly reduced in vivo tumor growth, suggesting a role of BRD4 in human colon cancer.
Journal of Clinical Investigation | 2015
Álvaro F. Fernández; Carlos López-Otín
Autophagy is a well-conserved catabolic process essential for cellular homeostasis. First described in yeast as an adaptive response to starvation, this pathway is also present in higher eukaryotes, where it is triggered by stress signals such as damaged organelles or pathogen infection. Autophagy is characterized at the cellular level by the engulfment of portions of the cytoplasm in double-membrane structures called autophagosomes. Autophagosomes fuse with lysosomes, resulting in degradation of the inner autophagosomal membrane and luminal content. This process is coordinated by complex molecular systems, including the ATG8 ubiquitin-like conjugation system and the ATG4 cysteine proteases, which are implicated in the formation, elongation, and fusion of these autophagic vesicles. In this Review, we focus on the diverse functional roles of the autophagins, a protease family formed by the four mammalian orthologs of yeast Atg4. We also address the dysfunctional expression of these proteases in several pathologic conditions such as cancer and inflammation and discuss potential therapies based on their modulation.
Autophagy | 2013
Sandra Cabrera; Álvaro F. Fernández; Guillermo Mariño; Alina Aguirre; María F. Suárez; Yaiza Español; José A. Vega; R. Laurà; Antonio Fueyo; M. Soledad Fernández-García; José M. P. Freije; Guido Kroemer; Carlos López-Otín
The identification of inflammatory bowel disease (IBD) susceptibility genes by genome-wide association has linked this pathology to autophagy, a lysosomal degradation pathway that is crucial for cell and tissue homeostasis. Here, we describe autophagy-related 4B, cysteine peptidase/autophagin-1 (ATG4B) as an essential protein in the control of inflammatory response during experimental colitis. In this pathological condition, ATG4B protein levels increase in parallel with the induction of autophagy. Moreover, ATG4B expression is significantly reduced in affected areas of the colon from IBD patients. Consistently, atg4b−/− mice present Paneth cell abnormalities, as well as an increased susceptibility to DSS-induced colitis. atg4b-deficient mice exhibit significant alterations in proinflammatory cytokines and mediators of the immune response to bacterial infections, which are reminiscent of those found in patients with Crohn disease or ulcerative colitis. Additionally, antibiotic treatments and bone marrow transplantation from wild-type mice reduced colitis in atg4b−/− mice. Taken together, these results provided additional evidence for the importance of autophagy in intestinal pathologies and describe ATG4B as a novel protective protein in inflammatory colitis. Finally, we propose that atg4b-null mice are a suitable model for in vivo studies aimed at testing new therapeutic strategies for intestinal diseases associated with autophagy deficiency.
American Journal of Physiology-lung Cellular and Molecular Physiology | 2013
Inés López-Alonso; Alina Aguirre; Adrián González-López; Álvaro F. Fernández; Laura Amado-Rodríguez; Aurora Astudillo; Estefanía Batalla-Solís; Guillermo M. Albaiceta
Excessive lung stretch triggers lung inflammation by activation of the NF-κB pathway. This route can be modulated by autophagy, an intracellular proteolytic system. Our objective was to study the impact of the absence of autophagy in a model of ventilator-induced lung injury. Mice lacking Autophagin-1/ATG4B (Atg4b-/-), a critical protease in the autophagic pathway, and their wild-type counterparts were studied in baseline conditions and after mechanical ventilation. Lung injury, markers of autophagy, and activation of the inflammatory response were evaluated after ventilation. Mechanical ventilation increased autophagy and induced lung injury in wild-type mice. Atg4b-/- animals showed a decreased lung injury after ventilation, with less neutrophilic infiltration than their wild-type counterparts. As expected, autophagy was absent in mutant animals, resulting in the accumulation of p62 and ubiquitinated proteins. Activation of the canonical NF-κB pathway was present in ventilated wild-type, but not Atg4b-deficient, animals. Moreover, these mutant mice showed an accumulation of ubiquitinated IκB. High-pressure ventilation partially restored the autophagic response in Atg4b-/- mice and abolished the differences between genotypes. In conclusion, impairment of autophagy results in an ameliorated inflammatory response to mechanical ventilation and decreases lung injury. The accumulation of ubiquitinated IκB may be responsible for this effect.
Journal of Molecular Medicine | 2014
Alina Aguirre; Inés López-Alonso; Adrián González-López; Laura Amado-Rodríguez; Estefanía Batalla-Solís; Aurora Astudillo; Jorge Blázquez-Prieto; Álvaro F. Fernández; José A. Galván; Claudia C. dos Santos; Guillermo M. Albaiceta
Autophagy has emerged as a key regulator of the inflammatory response. To examine the role of autophagy in the development of organ dysfunction during endotoxemia, wild-type and autophagy-deficient (Atg4b-null) mice were challenged with lipopolysaccharide. Animals lacking Atg4b showed increased mortality after endotoxemia. Among the different organs studied, only the lungs showed significant differences between genotypes, with increased damage in mutant animals. Autophagy was activated in lungs from wild-type, LPS-treated mice. Similarly, human bronchial cells show an increased autophagy when exposed to serum from septic patients. We found an increased inflammatory response (increased neutrophilic infiltration, higher levels of Il6, Il12p40, and Cxcl2) in the lungs from knockout mice and identified perinuclear sequestration of the anti-inflammatory transcription factor ATF3 as the putative mechanism responsible for the differences between genotypes. Finally, induction of autophagy by starvation before LPS exposure resulted in a dampened pulmonary response to LPS in wild-type, but not knockout, mice. Similar results were found in human bronchial cells exposed to LPS. Our results demonstrate the central role of autophagy in the regulation of the lung response to endotoxemia and sepsis and its potential modulation by nutrition.Key messagesEndotoxemia and sepsis trigger autophagy in lung tissue.Defective autophagy increases mortality and lung inflammation after endotoxemia.Impairment of autophagy results is perinuclear ATF3 sequestration.Starvation ameliorates lung injury by an autophagy-dependent mechanism.
Autophagy | 2010
Sandra Cabrera; Guillermo Mariño; Álvaro F. Fernández; Carlos López-Otín
The knowledge of the molecular mechanisms underlying autophagy has considerably improved after the isolation and characterization of autophagy-defective mutants in the yeast Saccharomyces cerevisiae. Two ubiquitin-like conjugation systems are required for yeast autophagy. One of them requires the participation of Atg8 synthesized as a precursor protein, which is cleaved after a Gly residue by a cysteine proteinase called Atg4. The new Gly-terminal residue from Atg8 is activated by Atg7 (an E1-like enzyme) then transferred to Atg3 (an E2-like enzyme) and finally conjugated with membrane-bound phosphatidylethanolamine (PE) through an amide bond. The complex Atg8–PE is also deconjugated by the protease Atg4, facilitating the release of Atg8 from membranes. This modification system, which is essential for the membrane rearrangement dynamics that accompany the initiation and execution of autophagy, is conserved in higher eukaryotes including mammals. We have previously identified and cloned the four human orthologues of the yeast proteinase Atg4, whereas parallel studies have revealed that there are at least six orthologues of yeast Atg8 in mammals (LC3A, LC3B, LC3C, GABARAP, ATG8L/GABARAPL1 and GATE-16/GABARAPL2). Thus, in mammals, the Atg4-Atg8 proteolytic system is composed of four proteinases (autophagins) that may target at least six distinct substrates, contrasting with the simplified yeast system in which one single protease cleaves a sole substrate. Currently, it is unclear why mammals have developed this array of closely related enzymes, as other essential autophagy genes such as Atg3, Atg5 or Atg7 are represented in mammalian cells by a single orthologue. It has been suggested that the multiplication of Atg4 orthologues may reflect a regulatory heterogeneity of functionally redundant proteins or, alternatively, derive from the acquisition of new functions that are not related to autophagy. Our first approach to elucidate this question was based on the generation of autophagin-3/Atg4C-deficient mice, which however presented a minor phenotype. With the generation of autophagin-1/Atg4B-deficient mice, recently reported, we have progressed in our attempt to identify the in vivo physiological and pathological roles of autophagins.
Advances in Experimental Medicine and Biology | 2010
Guillermo Mariño; Álvaro F. Fernández; Carlos López-Otín
Autophagy is an evolutionarily conserved process essential for cellular homeostasis and organismal viability. In fact, this pathway is one of the major protein degradation mechanisms in eukaryotic cells. It has been repeatedly reported that the autophagic activity of living cells decreases with age, probably contributing to the accumulation of damaged macromolecules and organelles during aging. Moreover, autophagy modulation in different model organisms has yielded very promising results suggesting that the maintenance of a proper autophagic activity contributes to extend longevity. On the other hand, recent findings have shown that distinct premature-aging murine models exhibit an extensive basal activation of autophagy instead of the characteristic decline in this process occurring during normal aging. This unexpected autophagic increase in progeroid models is usually associated with a series of metabolic alterations resembling those occurring under calorie restriction or in other situations reported to prolong life-span. In this chapter, we will discuss the current knowledge on the relationship between the autophagy pathway and aging with a special emphasis on the unexpected and novel link between premature aging and autophagy up-regulation.