Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Carlos López-Otín is active.

Publication


Featured researches published by Carlos López-Otín.


Nature | 2013

Signatures of mutational processes in human cancer

Ludmil B. Alexandrov; Serena Nik-Zainal; David C. Wedge; Samuel Aparicio; Sam Behjati; Andrew V. Biankin; Graham R. Bignell; Niccolo Bolli; Åke Borg; Anne Lise Børresen-Dale; Sandrine Boyault; Birgit Burkhardt; Adam Butler; Carlos Caldas; Helen Davies; Christine Desmedt; Roland Eils; Jórunn Erla Eyfjörd; John A. Foekens; Mel Greaves; Fumie Hosoda; Barbara Hutter; Tomislav Ilicic; Sandrine Imbeaud; Marcin Imielinsk; Natalie Jäger; David T. W. Jones; David Jones; Stian Knappskog; Marcel Kool

All cancers are caused by somatic mutations; however, understanding of the biological processes generating these mutations is limited. The catalogue of somatic mutations from a cancer genome bears the signatures of the mutational processes that have been operative. Here we analysed 4,938,362 mutations from 7,042 cancers and extracted more than 20 distinct mutational signatures. Some are present in many cancer types, notably a signature attributed to the APOBEC family of cytidine deaminases, whereas others are confined to a single cancer class. Certain signatures are associated with age of the patient at cancer diagnosis, known mutagenic exposures or defects in DNA maintenance, but many are of cryptic origin. In addition to these genome-wide mutational signatures, hypermutation localized to small genomic regions, ‘kataegis’, is found in many cancer types. The results reveal the diversity of mutational processes underlying the development of cancer, with potential implications for understanding of cancer aetiology, prevention and therapy.


Nature | 2005

Initial sequence of the chimpanzee genome and comparison with the human genome

Tarjei S. Mikkelsen; LaDeana W. Hillier; Evan E. Eichler; Michael C. Zody; David B. Jaffe; Shiaw-Pyng Yang; Wolfgang Enard; Ines Hellmann; Kerstin Lindblad-Toh; Tasha K. Altheide; Nicoletta Archidiacono; Peer Bork; Jonathan Butler; Jean L. Chang; Ze Cheng; Asif T. Chinwalla; Pieter J. de Jong; Kimberley D. Delehaunty; Catrina C. Fronick; Lucinda L. Fulton; Yoav Gilad; Gustavo Glusman; Sante Gnerre; Tina Graves; Toshiyuki Hayakawa; Karen E. Hayden; Xiaoqiu Huang; Hongkai Ji; W. James Kent; Mary Claire King

Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.Here we present a draft genome sequence of the common chimpanzee (Pan troglodytes). Through comparison with the human genome, we have generated a largely complete catalogue of the genetic differences that have accumulated since the human and chimpanzee species diverged from our common ancestor, constituting approximately thirty-five million single-nucleotide changes, five million insertion/deletion events, and various chromosomal rearrangements. We use this catalogue to explore the magnitude and regional variation of mutational forces shaping these two genomes, and the strength of positive and negative selection acting on their genes. In particular, we find that the patterns of evolution in human and chimpanzee protein-coding genes are highly correlated and dominated by the fixation of neutral and slightly deleterious alleles. We also use the chimpanzee genome as an outgroup to investigate human population genetics and identify signatures of selective sweeps in recent human evolution.


Science | 2013

Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain

Esther Lapuente-Brun; Raquel Moreno-Loshuertos; Rebeca Acín-Pérez; Ana Latorre-Pellicer; Carmen Colás; Eduardo Balsa; Ester Perales-Clemente; Pedro M. Quirós; Enrique Calvo; M. A. C. Rodríguez-Hernández; Plácido Navas; Raquel Cruz; Angel Carracedo; Carlos López-Otín; Acisclo Pérez-Martos; Patricio Fernández-Silva; Erika Fernandez-Vizarra; José Antonio Enríquez

Respiration Refined Cells derive energy from redox reactions mediated by mitochondrial enzymes that form the electron transport chain. The enzymes can form large complexes, known as supercomplexes, whose function has been controversial. Lapuente-Brun et al. (p. 1567) discovered that a mouse protein, supercomplex assembly factor I (SCAFI), specifically modulates assembly of respiratory complexes into supercomplexes. Formation of the supercomplexes appears to cause electrons to be processed differently, depending on the substrate from which they are derived. Ordered formation of supercomplexes of respiratory enzymes influences metabolic efficiency in response to food supply. The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.


Nature Reviews Cancer | 2002

Strategies for MMP inhibition in cancer: innovations for the post-trial era

Christopher M. Overall; Carlos López-Otín

For more than two decades, the view that tumour-associated matrix metalloproteinases (MMPs) were required for peritumour tissue degradation and metastasis dominated the drive to develop MMP inhibitors as anticancer therapeutics. Until recently, clinical trials with MMP inhibitors have yielded disappointing results, highlighting the need for better insight into the mechanisms by which this growing family of multifunctional enzymes contribute to tumour growth. It is now recognized that MMP activity is tightly regulated at several levels, providing new avenues for blocking these enzymes. What are the different approaches that can be used to target MMPs, and which of these might lead to new therapeutic strategies for cancer?


Nature | 2011

Whole-genome sequencing identifies recurrent mutations in chronic lymphocytic leukaemia

Xose S. Puente; Magda Pinyol; Víctor Quesada; Laura Conde; Gonzalo R. Ordóñez; Neus Villamor; Geòrgia Escaramís; Pedro Jares; Sílvia Beà; Marcos González-Díaz; Laia Bassaganyas; Tycho Baumann; Manel Juan; Mónica López-Guerra; Dolors Colomer; Jose M. C. Tubio; Cristina López; Alba Navarro; Cristian Tornador; Marta Aymerich; María Rozman; Jesús Hernández; Diana A. Puente; José M. P. Freije; Gloria Velasco; Ana Gutiérrez-Fernández; Dolors Costa; Anna Carrió; Sara Guijarro; Anna Enjuanes

Chronic lymphocytic leukaemia (CLL), the most frequent leukaemia in adults in Western countries, is a heterogeneous disease with variable clinical presentation and evolution. Two major molecular subtypes can be distinguished, characterized respectively by a high or low number of somatic hypermutations in the variable region of immunoglobulin genes. The molecular changes leading to the pathogenesis of the disease are still poorly understood. Here we performed whole-genome sequencing of four cases of CLL and identified 46 somatic mutations that potentially affect gene function. Further analysis of these mutations in 363 patients with CLL identified four genes that are recurrently mutated: notch 1 (NOTCH1), exportin 1 (XPO1), myeloid differentiation primary response gene 88 (MYD88) and kelch-like 6 (KLHL6). Mutations in MYD88 and KLHL6 are predominant in cases of CLL with mutated immunoglobulin genes, whereas NOTCH1 and XPO1 mutations are mainly detected in patients with unmutated immunoglobulins. The patterns of somatic mutation, supported by functional and clinical analyses, strongly indicate that the recurrent NOTCH1, MYD88 and XPO1 mutations are oncogenic changes that contribute to the clinical evolution of the disease. To our knowledge, this is the first comprehensive analysis of CLL combining whole-genome sequencing with clinical characteristics and clinical outcomes. It highlights the usefulness of this approach for the identification of clinically relevant mutations in cancer.


Journal of Biological Chemistry | 1996

Biochemical Characterization of Human Collagenase-3

Vera Knäuper; Carlos López-Otín; Bryan J. Smith; Graham Knight; Gillian Murphy

The cDNA of a novel matrix metalloproteinase, collagenase-3 (MMP-13) has been isolated from a breast tumor library (Freije, J. M. P., Diez-Itza, I., Balbin, M., Sanchez, L. M., Blasco, R., Tolivia, J., and López-Otin, C.(1994) J. Biol. Chem. 269, 16766-16773), and a potential role in tumor progression has been proposed for this enzyme. In order to establish the possible role of collagenase-3 in connective tissue turnover, we have expressed and purified recombinant human procollagenase-3 and characterized the enzyme biochemically. The purified procollagenase-3 was shown to be glycosylated and displayed a M of 60,000, the N-terminal sequence being LPLPSGGD, which is consistent with the cDNA-predicted sequence. The proenzyme was activated by p-aminophenylmercuric acetate or stromelysin, yielding an intermediate form of M 50,000, which displayed the N-terminal sequence LEVTGK. Further processing resulted in cleavage of the Glu-Tyr peptide bond to the final active enzyme (M 48,000). Trypsin activation of procollagenase-3 also generated a Tyr N terminus, but it was evident that the C-terminal domain was rapidly lost, and hence the collagenolytic activity diminished. Analysis of the substrate specificity of collagenase-3 revealed that soluble type II collagen was preferentially hydrolyzed, while the enzyme was 5 or 6 times less efficient at cleaving type I or III collagen. Fibrillar type I collagen was cleaved with comparable efficiency to the fibroblast and neutrophil collagenases (MMP-1 and MMP-8), respectively. Unlike these collagenases, gelatin and the peptide substrates Mca-Pro-Leu-Gly-Leu-Dpa-Ala-Arg-NH and Mca-Pro-Cha-Gly-Nva-His-Ala-Dpa-NH were efficiently hydrolyzed as well, as would be predicted from the similarities between the active site sequence of collagenase-3 (MMP-13) and the gelatinases A and B. Active collagenase-3 was inhibited in a 1:1 stoichiometric fashion by the tissue inhibitors of metalloproteinases, TIMP-1, TIMP-2, and TIMP-3. These results suggest that in vivo collagenase-3 could play a significant role in the turnover of connective tissue matrix constituents.


Nature Reviews Genetics | 2003

Human and mouse proteases: a comparative genomic approach

Xose S. Puente; Luis M. Sánchez; Christopher M. Overall; Carlos López-Otín

The availability of the human and mouse genome sequences has allowed the identification and comparison of their respective degradomes — the complete repertoire of proteases that are produced by these organisms. Because of the essential roles of proteolytic enzymes in the control of cell behaviour, survival and death, degradome analysis provides a useful framework for the global exploration of these protease-mediated functions in normal and pathological conditions.


Journal of Biological Chemistry | 1996

Cellular Mechanisms for Human Procollagenase-3 (MMP-13) Activation EVIDENCE THAT MT1-MMP (MMP-14) AND GELATINASE A (MMP-2) ARE ABLE TO GENERATE ACTIVE ENZYME

Vera Knäuper; Horst Will; Carlos López-Otín; Bryan J. Smith; Susan J. Atkinson; Heather Stanton; Rosalind M. Hembry; Gillian Murphy

Gelatinase A and membrane-type metalloproteinase (MT1-MMP) were able to process human procollagenase-3 (Mr 60,000) to the fully active enzyme (Tyr85 N terminus; Mr 48,000). MT1-MMP activated procollagenase-3 via a Mr 56,000 intermediate (Ile36 N terminus) to 48,000 which was the result of the cleavage of the Glu84-Tyr85 peptide bond. We have established that the activation rate of procollagenase-3 by MT1-MMP was enhanced in the presence of progelatinase A, thereby demonstrating a unique new activation cascade consisting of three members of the matrix metalloproteinase family. In addition, procollagenase-3 can be activated by plasmin, which cleaved the Lys38-Glu39 and Arg76-Cys77 peptide bonds in the propeptide domain. Autoproteolysis then resulted in the release of the rest of the propeptide domain generating Tyr85 N-terminal active collagenase-3. However, plasmin cleaved the C-terminal domain of collagenase-3 which results in the loss of its collagenolytic activity. Concanavalin A-stimulated fibroblasts expressing MT1-MMP and fibroblast-derived plasma membranes were able to process human procollagenase-3 via a Mr 56,000 intermediate form to the final Mr 48,000 active enzyme which, by analogy with progelatinase A activation, may represent a model system for in vivo activation. Inhibition experiments using tissue inhibitor of metalloproteinases, plasminogen activator inhibitor-2, or aprotinin demonstrated that activation in the cellular model system was due to MT1-MMP/gelatinase A and excluded the participation of serine proteinases such as plasmin during procollagenase-3 activation. We have established that progelatinase A can considerably potentiate the activation rate of procollagenase-3 by crude plasma membrane preparations from concanavalin A-stimulated fibroblasts, thus confirming our results using purified progelatinase A and MT1-MMP. This new activation cascade may be significant in human breast cancer pathology, where all three enzymes have been implicated as playing important roles.


Nature Genetics | 2012

Exome sequencing identifies recurrent mutations of the splicing factor SF3B1 gene in chronic lymphocytic leukemia

Víctor Quesada; Laura Conde; Neus Villamor; Gonzalo R. Ordóñez; Pedro Jares; Laia Bassaganyas; Andrew J. Ramsay; Sílvia Beà; Magda Pinyol; Alejandra Martínez-Trillos; Mónica López-Guerra; Dolors Colomer; Alba Navarro; Tycho Baumann; Marta Aymerich; María Rozman; Julio Delgado; Eva Giné; Jesús Hernández; Marcos González-Díaz; Diana A. Puente; Gloria Velasco; José M. P. Freije; Jose M. C. Tubio; Romina Royo; Josep Lluís Gelpí; Modesto Orozco; David G. Pisano; Jorge Zamora; Miguel Vazquez

Here we perform whole-exome sequencing of samples from 105 individuals with chronic lymphocytic leukemia (CLL), the most frequent leukemia in adults in Western countries. We found 1,246 somatic mutations potentially affecting gene function and identified 78 genes with predicted functional alterations in more than one tumor sample. Among these genes, SF3B1, encoding a subunit of the spliceosomal U2 small nuclear ribonucleoprotein (snRNP), is somatically mutated in 9.7% of affected individuals. Further analysis in 279 individuals with CLL showed that SF3B1 mutations were associated with faster disease progression and poor overall survival. This work provides the first comprehensive catalog of somatic mutations in CLL with relevant clinical correlates and defines a large set of new genes that may drive the development of this common form of leukemia. The results reinforce the idea that targeting several well-known genetic pathways, including mRNA splicing, could be useful in the treatment of CLL and other malignancies.


Nature | 2010

The genome of a songbird.

Wesley C. Warren; David F. Clayton; Hans Ellegren; Arthur P. Arnold; LaDeana W. Hillier; Axel Künstner; Steve Searle; Simon White; Albert J. Vilella; Susan Fairley; Andreas Heger; Lesheng Kong; Chris P. Ponting; Erich D. Jarvis; Claudio V. Mello; Patrick Minx; Peter V. Lovell; Tarciso Velho; Margaret Ferris; Christopher N. Balakrishnan; Saurabh Sinha; Charles Blatti; Sarah E. London; Yun Li; Ya-Chi Lin; Julia M. George; Jonathan V. Sweedler; Bruce R. Southey; Preethi H. Gunaratne; M. G. Watson

The zebra finch is an important model organism in several fields with unique relevance to human neuroscience. Like other songbirds, the zebra finch communicates through learned vocalizations, an ability otherwise documented only in humans and a few other animals and lacking in the chicken—the only bird with a sequenced genome until now. Here we present a structural, functional and comparative analysis of the genome sequence of the zebra finch (Taeniopygia guttata), which is a songbird belonging to the large avian order Passeriformes. We find that the overall structures of the genomes are similar in zebra finch and chicken, but they differ in many intrachromosomal rearrangements, lineage-specific gene family expansions, the number of long-terminal-repeat-based retrotransposons, and mechanisms of sex chromosome dosage compensation. We show that song behaviour engages gene regulatory networks in the zebra finch brain, altering the expression of long non-coding RNAs, microRNAs, transcription factors and their targets. We also show evidence for rapid molecular evolution in the songbird lineage of genes that are regulated during song experience. These results indicate an active involvement of the genome in neural processes underlying vocal communication and identify potential genetic substrates for the evolution and regulation of this behaviour.

Collaboration


Dive into the Carlos López-Otín's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alberto M. Pendás

Spanish National Research Council

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Elias Campo

University of Barcelona

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge