Alvaro O. Ardiles
Valparaiso University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alvaro O. Ardiles.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Alvaro O. Ardiles; Cheril Tapia-Rojas; Madhuchhanda Mandal; Frédéric Alexandre; Alfredo Kirkwood; Nibaldo C. Inestrosa; Adrian G. Palacios
Alzheimer’s disease (AD) is an age-related neurodegenerative disorder associated with progressive memory loss, severe dementia, and hallmark neuropathological markers, such as deposition of amyloid-β (Aβ) peptides in senile plaques and accumulation of hyperphosphorylated tau proteins in neurofibrillary tangles. Recent evidence obtained from transgenic mouse models suggests that soluble, nonfibrillar Aβ oligomers may induce synaptic failure early in AD. Despite their undoubted value, these transgenic models rely on genetic manipulations that represent the inherited and familial, but not the most abundant, sporadic form of AD. A nontransgenic animal model that still develops hallmarks of AD would be an important step toward understanding how sporadic AD is initiated. Here we show that starting between 12 and 36 mo of age, the rodent Octodon degus naturally develops neuropathological signs of AD, such as accumulation of Aβ oligomers and phosphorylated tau proteins. Moreover, age-related changes in Aβ oligomers and tau phosphorylation levels are correlated with decreases in spatial and object recognition memory, postsynaptic function, and synaptic plasticity. These findings validate O. degus as a suitable natural model for studying how sporadic AD may be initiated.
Neuron | 2012
Shiyong Huang; Mario Treviño; Kaiwen He; Alvaro O. Ardiles; Roberto De Pasquale; Yatu Guo; Adrian G. Palacios; Richard L. Huganir; Alfredo Kirkwood
Neuromodulatory input, acting on G protein-coupled receptors, is essential for the induction of experience-dependent cortical plasticity. Here we report that G-coupled receptors in layer II/III of visual cortex control the polarity of synaptic plasticity through a pull-push regulation of LTP and LTD. In slices, receptors coupled to Gs promote LTP while suppressing LTD; conversely, receptors coupled to Gq11 promote LTD and suppress LTP. In vivo, the selective stimulation of Gs- or Gq11-coupled receptors brings the cortex into LTP-only or LTD-only states, which allows the potentiation or depression of targeted synapses with visual stimulation. The pull-push regulation of LTP/LTD occurs via direct control of the synaptic plasticity machinery and it is independent of changes in NMDAR activation or neuronal excitability. We propose these simple rules governing the pull-push control of LTP/LTD form a general metaplasticity mechanism that may contribute to neuromodulation of plasticity in other cortical circuits.
Cell Reports | 2016
Gabriela Martínez; René L. Vidal; Pablo Mardones; Felipe G. Serrano; Alvaro O. Ardiles; Craig Wirth; Pamela Valdés; Peter Thielen; Bernard L. Schneider; Bredford Kerr; José L. Valdés; Adrian G. Palacios; Nibaldo C. Inestrosa; Laurie H. Glimcher; Claudio Hetz
Contextual memory formation relies on the induction of new genes in the hippocampus. A polymorphism in the promoter of the transcription factor XBP1 was identified as a risk factor for Alzheimers disease and bipolar disorders. XBP1 is a major regulator of the unfolded protein response (UPR), mediating adaptation to endoplasmic reticulum (ER) stress. Using a phenotypic screen, we uncovered an unexpected function of XBP1 in cognition and behavior. Mice lacking XBP1 in the nervous system showed specific impairment of contextual memory formation and long-term potentiation (LTP), whereas neuronal XBP1s overexpression improved performance in memory tasks. Gene expression analysis revealed that XBP1 regulates a group of memory-related genes, highlighting brain-derived neurotrophic factor (BDNF), a key component in memory consolidation. Overexpression of BDNF in the hippocampus reversed the XBP1-deficient phenotype. Our study revealed an unanticipated function of XBP1 in cognitive processes that is apparently unrelated to its role in ER stress.
Alzheimers & Dementia | 2014
Lily Yu-Li Chang; Jennifer Lowe; Alvaro O. Ardiles; Julie Lim; Angus C. Grey; Ken Robertson; Helen V. Danesh-Meyer; Adrian G. Palacios; Monica L. Acosta
Alzheimers disease (AD) is the most common form of dementia with progressive deterioration of memory and cognition. Complaints related to vision are common among AD patients. Several changes in the retina, lens, and in the vasculature have been noted in the AD eye that may be the cause of visual symptoms experienced by the AD patient. Anatomical changes have been detected within the eye before signs of cognitive impairment and memory loss are apparent. Unlike the brain, the eye is a unique organ that can be visualized noninvasively at the cellular level because of its transparent nature, which allows for inexpensive testing of biomarkers in a clinical setting. In this review, we have searched for candidate biomarkers that could enable diagnosis of AD, covering ocular neurodegeneration associated with functional tests. We explore the evidence that suggests that inexpensive, noninvasive clinical tests could be used to detect AD ocular biomarkers.
Archives of Medical Research | 2012
Ana M. Cárdenas; Alvaro O. Ardiles; Natalia Barraza; Ximena Báez-Matus; Pablo Caviedes
Neurodegenerative disorders constitute a growing concern worldwide. Their incidence has increased steadily, in particular among the elderly, a high-risk population that is becoming an important segment of society. Neurodegenerative mechanisms underlie many ailments such as Parkinsons disease, Huntingtons disease, Alzheimers disease (AD) and Down syndrome (DS, trisomy 21). Interestingly, there is increasing evidence suggesting that many such diseases share pathogenic mechanisms at the cellular and subcellular levels. These include altered protein misfolding, impaired autophagy, mitochondrial dysfunction, membrane damage, and altered axonal transport. Regarding AD and DS, the first common link comes from observations that DS patients undergo AD-like pathology early in adulthood. Also, the gene encoding for the amyloid precursor protein is present in human autosome 21 and in murine chromosome 16, an animal model of DS. Important functions related to preservation of normal neuronal architecture are impaired in both conditions. In particular, the stable assembly of microtubules, which is critical for the cytoskeleton, is impaired in AD and DS. In this process, tau protein plays a pivotal role in controlling microtubule stability. Abnormal tau expression and hyperphosphorylation are common features in both conditions, yet the mechanisms leading to these phenomena remain obscure. In the present report we review possible common mechanisms that may alter tau expression and function, in particular in relation to the effect of certain overexpressed DS-related genes, using cellular models of human DS. The latter contributes to the identification of possible therapeutic targets that could aid in the treatment of both AD and DS.
Acta Neuropathologica | 2017
Claudia Duran-Aniotz; Víctor Hugo Cornejo; Sandra Espinoza; Alvaro O. Ardiles; Danilo B. Medinas; Claudia Salazar; Andrew Foley; Ivana Gajardo; Peter Thielen; Takao Iwawaki; Wiep Scheper; Claudio Soto; Adrian G. Palacios; Jeroen J.M. Hoozemans; Claudio Hetz
Altered proteostasis is a salient feature of Alzheimer’s disease (AD), highlighting the occurrence of endoplasmic reticulum (ER) stress and abnormal protein aggregation. ER stress triggers the activation of the unfolded protein response (UPR), a signaling pathway that enforces adaptive programs to sustain proteostasis or eliminate terminally damaged cells. IRE1 is an ER-located kinase and endoribonuclease that operates as a major stress transducer, mediating both adaptive and proapoptotic programs under ER stress. IRE1 signaling controls the expression of the transcription factor XBP1, in addition to degrade several RNAs. Importantly, a polymorphism in the XBP1 promoter was suggested as a risk factor to develop AD. Here, we demonstrate a positive correlation between the progression of AD histopathology and the activation of IRE1 in human brain tissue. To define the significance of the UPR to AD, we targeted IRE1 expression in a transgenic mouse model of AD. Despite initial expectations that IRE1 signaling may protect against AD, genetic ablation of the RNase domain of IRE1 in the nervous system significantly reduced amyloid deposition, the content of amyloid β oligomers, and astrocyte activation. IRE1 deficiency fully restored the learning and memory capacity of AD mice, associated with improved synaptic function and improved long-term potentiation (LTP). At the molecular level, IRE1 deletion reduced the expression of amyloid precursor protein (APP) in cortical and hippocampal areas of AD mice. In vitro experiments demonstrated that inhibition of IRE1 downstream signaling reduces APP steady-state levels, associated with its retention at the ER followed by proteasome-mediated degradation. Our findings uncovered an unanticipated role of IRE1 in the pathogenesis of AD, offering a novel target for disease intervention.
Brain Pathology | 2015
Nibaldo C. Inestrosa; Juvenal A. Ríos; Pedro Cisternas; Cheril Tapia-Rojas; Daniela S. Rivera; Nady Braidy; Juan M. Zolezzi; Juan A. Godoy; Francisco J. Carvajal; Alvaro O. Ardiles; Francisco Bozinovic; Adrian G. Palacios; Perminder S. Sachdev
Alzheimers disease (AD) is the most common neurodegenerative disorder and the leading cause of age‐related dementia worldwide. Several models for AD have been developed to provide information regarding the initial changes that lead to degeneration. Transgenic mouse models recapitulate many, but not all, of the features of AD, most likely because of the high complexity of the pathology. In this context, the validation of a wild‐type animal model of AD that mimics the neuropathological and behavioral abnormalities is necessary. In previous studies, we have reported that the Chilean rodent Octodon degus could represent a natural model for AD. In the present work, we further describe the age‐related neurodegeneration observed in the O. degus brain. We report some histopathological markers associated with the onset progression of AD, such as glial activation, increase in oxidative stress markers, neuronal apoptosis and the expression of the peroxisome proliferative‐activated receptor γ coactivator‐1α (PGC‐1α). With these results, we suggest that the O. degus could represent a new model for AD research and a powerful tool in the search for therapeutic strategies against AD.
Frontiers in Cellular Neuroscience | 2014
Alvaro O. Ardiles; Carolina Flores-Muñoz; Gabriela Toro-Ayala; Ana M. Cárdenas; Adrian G. Palacios; Pablo Muñoz; Marco Fuenzalida; Juan C. Sáez; Agustín D. Martínez
The threshold for bidirectional modification of synaptic plasticity is known to be controlled by several factors, including the balance between protein phosphorylation and dephosphorylation, postsynaptic free Ca2+ concentration and NMDA receptor (NMDAR) composition of GluN2 subunits. Pannexin 1 (Panx1), a member of the integral membrane protein family, has been shown to form non-selective channels and to regulate the induction of synaptic plasticity as well as hippocampal-dependent learning. Although Panx1 channels have been suggested to play a role in excitatory long-term potentiation (LTP), it remains unknown whether these channels also modulate long-term depression (LTD) or the balance between both types of synaptic plasticity. To study how Panx1 contributes to excitatory synaptic efficacy, we examined the age-dependent effects of eliminating or blocking Panx1 channels on excitatory synaptic plasticity within the CA1 region of the mouse hippocampus. By using different protocols to induce bidirectional synaptic plasticity, Panx1 channel blockade or lack of Panx1 were found to enhance LTP, whereas both conditions precluded the induction of LTD in adults, but not in young animals. These findings suggest that Panx1 channels restrain the sliding threshold for the induction of synaptic plasticity and underlying brain mechanisms of learning and memory.
Journal of Neurochemistry | 2006
Alvaro O. Ardiles; Jaime Maripillán; Verónica Lagos; Rodrigo Toro; Italo G. Mora; Lorena Villarroel; Eva Alés; Ricardo Borges; Ana M. Cárdenas
We have used astrocyte‐conditioned medium (ACM) to promote the transdifferentiation of bovine chromaffin cells and study modifications in the exocytotic process when these cells acquire a neuronal phenotype. In the ACM‐promoted neuronal phenotype, secretory vesicles and intracellular Ca2+ rise were preferentially distributed in the neurite terminals. Using amperometry, we observed that the exocytotic events also occurred mainly in the neurite terminals, wherein the individual exocytotic events had smaller quantal size than in undifferentiated cells. Additionally, duration of pre‐spike current was significantly shorter, suggesting that ACM also modifies the fusion pore stability. After long exposure (7–9 days) to ACM, the kinetics of catecholamine release from individual vesicles was markedly accelerated. The morphometric analysis of vesicle diameters suggests that the rapid exocytotic events observed in neurites of ACM‐treated cells correspond to the exocytosis of large dense‐core vesicles (LDCV). On the other hand, experiments performed in EGTA‐loaded cells suggest that ACM treatment promotes a better coupling between voltage‐gated calcium channels (VGCC) and LDCV. Thus, our findings reveal that ACM promotes a neuronal phenotype in chromaffin cells, wherein the exocytotic kinetics is accelerated. Such rapid exocytosis mode could be caused at least in part by a better coupling between secretory vesicles and VGCC.
The Journal of Neuroscience | 2013
Sunggu Yang; Andrea Megill; Alvaro O. Ardiles; Sarah Ransom; Trinh Tran; Ming Teng Koh; Hey Kyoung Lee; Michela Gallagher; Alfredo Kirkwood
The impact of aging on cognitive capabilities varies among individuals ranging from significant impairment to preservation of function on par with younger adults. Research on the neural basis for age-related memory decline has focused primarily on the CA1 region of the hippocampus. However, recent studies in elderly human and rodents indicate that individual differences in cognitive aging are more strongly tied to functional alterations in CA3 circuits. To examine synaptic plasticity in the CA3 region, we used aged rats behaviorally characterized in a hippocampal-dependent task to evaluate the status of long-term potentiation and long-term depression (LTP and LTD) in the associative/commissural pathway (A/C→CA3), which provides the majority of excitatory input to CA3 pyramidal neurons. We found that, unlike in CA1 synapses, in A/C→CA3 LTP is minimally affected by age. However, two forms of LTD, involving NMDA and metabotropic glutamate receptors (mGluR), are both greatly reduced in age-impaired rats. Age-unimpaired rats, in contrast, had intact mGluR LTD. These findings indicate that the integrity of mGluR-LTD at A/C→CA3 inputs may play a crucial role in maintaining the performance of CA3 circuitry in aging.