Alvin Berger
Nestlé
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Alvin Berger.
Nature | 2009
Arun Sreekumar; Laila M. Poisson; Thekkelnaycke M. Rajendiran; Amjad P. Khan; Qi Cao; Jindan Yu; Bharathi Laxman; Rohit Mehra; Robert J. Lonigro; Yong Li; Mukesh K. Nyati; Aarif Ahsan; Shanker Kalyana-Sundaram; Bo Han; Xuhong Cao; Jaeman Byun; Gilbert S. Omenn; Debashis Ghosh; Subramaniam Pennathur; Danny Alexander; Alvin Berger; Jeffrey R. Shuster; John T. Wei; Sooryanarayana Varambally; Christopher Beecher; Arul M. Chinnaiyan
Multiple, complex molecular events characterize cancer development and progression. Deciphering the molecular networks that distinguish organ-confined disease from metastatic disease may lead to the identification of critical biomarkers for cancer invasion and disease aggressiveness. Although gene and protein expression have been extensively profiled in human tumours, little is known about the global metabolomic alterations that characterize neoplastic progression. Using a combination of high-throughput liquid-and-gas-chromatography-based mass spectrometry, we profiled more than 1,126 metabolites across 262 clinical samples related to prostate cancer (42 tissues and 110 each of urine and plasma). These unbiased metabolomic profiles were able to distinguish benign prostate, clinically localized prostate cancer and metastatic disease. Sarcosine, an N-methyl derivative of the amino acid glycine, was identified as a differential metabolite that was highly increased during prostate cancer progression to metastasis and can be detected non-invasively in urine. Sarcosine levels were also increased in invasive prostate cancer cell lines relative to benign prostate epithelial cells. Knockdown of glycine-N-methyl transferase, the enzyme that generates sarcosine from glycine, attenuated prostate cancer invasion. Addition of exogenous sarcosine or knockdown of the enzyme that leads to sarcosine degradation, sarcosine dehydrogenase, induced an invasive phenotype in benign prostate epithelial cells. Androgen receptor and the ERG gene fusion product coordinately regulate components of the sarcosine pathway. Here, by profiling the metabolomic alterations of prostate cancer progression, we reveal sarcosine as a potentially important metabolic intermediary of cancer cell invasion and aggressivity.
Pharmacogenomics | 2008
Kay A. Lawton; Alvin Berger; Matthew W. Mitchell; K. Eric Milgram; Anne M. Evans; Lining Guo; Richard W Hanson; Satish C. Kalhan; John Ryals; Michael V. Milburn
OBJECTIVE It is well established that disease states are associated with biochemical changes (e.g., diabetes/glucose, cardiovascular disease/cholesterol), as are responses to chemical agents (e.g., medications, toxins, xenobiotics). Recently, nontargeted methods have been used to identify the small molecules (metabolites) in a biological sample to uncover many of the biochemical changes associated with a disease state or chemical response. Given that these experimental results may be influenced by the composition of the cohort, in the present study we assessed the effects of age, sex and race on the relative concentrations of small molecules (metabolites) in the blood of healthy adults. METHODS Using gas- and liquid-chromatography in combination with mass spectrometry, a nontargeted metabolomic analysis was performed on plasma collected from an age- and sex-balanced cohort of 269 individuals. RESULTS Of the more than 300 unique compounds that were detected, significant changes in the relative concentration of more than 100 metabolites were associated with age. Many fewer differences were associated with sex and fewer still with race. Changes in protein, energy and lipid metabolism, as well as oxidative stress, were observed with increasing age. Tricarboxylic acid intermediates, creatine, essential and nonessential amino acids, urea, ornithine, polyamines and oxidative stress markers (e.g., oxoproline, hippurate) increased with age. Compounds related to lipid metabolism, including fatty acids, carnitine, beta-hydroxybutyrate and cholesterol, were lower in the blood of younger individuals. By contrast, relative concentrations of dehydroepiandrosterone-sulfate (a proposed antiaging androgen) were lowest in the oldest age group. Certain xenobiotics (e.g., caffeine) were higher in older subjects, possibly reflecting decreases in hepatic cytochrome P450 activity. CONCLUSIONS Our nontargeted analytical approach detected a large number of metabolites, including those that were found to be statistically altered with age, sex or race. Age-associated changes were more pronounced than those related to differences in sex or race in the population group we studied. Age, sex and race can be confounding factors when comparing different groups in clinical studies. Future studies to determine the influence of diet, lifestyle and medication are also warranted.
Proceedings of the National Academy of Sciences of the United States of America | 2001
Alvin Berger; Gayle L. Crozier; T. Bisogno; P. Cavaliere; S. Innis; V. Di Marzo
Endogenous ligands of cannabinoid receptors have been discovered recently and include some N-acylethanolamines (NAEs; e.g., N-arachidonoylethanolamine) and some 2-acylglycerols (e.g., sn-2-arachidonoylglycerol). Previously, we found these compounds to be active biologically when administered per os in large quantities to mice. In the present work, piglets were fed diets with and without 20:4n−6 and 22:6n−3 fatty acid precursors of NAEs, in levels similar to those found in porcine milk, during the first 18 days of life, and corresponding brain NAEs were assessed. In piglets fed diets containing 20:4n−6 and 22:6n−3, there were increases in several biologically active NAEs in brain homogenates—20:4n−6 NAE (4-fold), 20:5n−3 NAE (5-fold), and 22:5n−3 and 22:6n−3 NAE (9- to 10-fold). These results support a mechanism we propose for dietary long-chain polyunsaturated fatty acids influences on brain biochemistry with presumed functional sequelae. This paradigm will enable targeted investigations to determine whether and why specific populations such as infants, elderly, or persons suffering from certain clinical conditions may benefit from dietary long-chain polyunsaturated fatty acids.
BMC Bioinformatics | 2002
David M. Mutch; Alvin Berger; Robert Mansourian; Andreas Rytz; Matthew-Alan Roberts
BackgroundThe biomedical community is developing new methods of data analysis to more efficiently process the massive data sets produced by microarray experiments. Systematic and global mathematical approaches that can be readily applied to a large number of experimental designs become fundamental to correctly handle the otherwise overwhelming data sets.ResultsThe gene selection model presented herein is based on the observation that: (1) variance of gene expression is a function of absolute expression; (2) one can model this relationship in order to set an appropriate lower fold change limit of significance; and (3) this relationship defines a function that can be used to select differentially expressed genes. The model first evaluates fold change (FC) across the entire range of absolute expression levels for any number of experimental conditions. Genes are systematically binned, and those genes within the top X% of highest FCs for each bin are evaluated both with and without the use of replicates. A function is fitted through the top X% of each bin, thereby defining a limit fold change. All genes selected by the 5% FC model lie above measurement variability using a within standard deviation (SDwithin) confidence level of 99.9%. Real time-PCR (RT-PCR) analysis demonstrated 85.7% concordance with microarray data selected by the limit function.ConclusionThe FC model can confidently select differentially expressed genes as corroborated by variance data and RT-PCR. The simplicity of the overall process permits selecting model limits that best describe experimental data by extracting information on gene expression patterns across the range of expression levels. Genes selected by this process can be consistently compared between experiments and enables the user to globally extract information with a high degree of confidence.
Molecular and Cellular Biology | 2009
Mark A. Watson; Anne Roulston; Laurent Bélec; Xavier Billot; Richard C. Marcellus; Dominique Bédard; Cynthia Bernier; Stéphane Branchaud; Helen S. L. Chan; Kenza Dairi; Daniel Goulet; Michel-Olivier Gratton; Henady Isakau; Anne Jang; Abdelkrim Khadir; Elizabeth Koch; Manon Lavoie; Michael Lawless; Mai Nguyen; Denis Paquette; Émilie Turcotte; Alvin Berger; Matthew W. Mitchell; Gordon C. Shore; Pierre Beauparlant
ABSTRACT GMX1777 is a prodrug of the small molecule GMX1778, currently in phase I clinical trials for the treatment of cancer. We describe findings indicating that GMX1778 is a potent and specific inhibitor of the NAD+ biosynthesis enzyme nicotinamide phosphoribosyltransferase (NAMPT). Cancer cells have a very high rate of NAD+ turnover, which makes NAD+ modulation an attractive target for anticancer therapy. Selective inhibition by GMX1778 of NAMPT blocks the production of NAD+ and results in tumor cell death. Furthermore, GMX1778 is phosphoribosylated by NAMPT, which increases its cellular retention. The cytotoxicity of GMX1778 can be bypassed with exogenous nicotinic acid (NA), which permits NAD+ repletion via NA phosphoribosyltransferase 1 (NAPRT1). The cytotoxicity of GMX1778 in cells with NAPRT1 deficiency, however, cannot be rescued by NA. Analyses of NAPRT1 mRNA and protein levels in cell lines and primary tumor tissue indicate that high frequencies of glioblastomas, neuroblastomas, and sarcomas are deficient in NAPRT1 and not susceptible to rescue with NA. As a result, the therapeutic index of GMX1777 can be widended in the treatment animals bearing NAPRT1-deficient tumors by coadministration with NA. This provides the rationale for a novel therapeutic approach for the use of GMX1777 in the treatment of human cancers.
Nature | 1998
Vincenzo Di Marzo; Nunzio Sepe; Luciano De Petrocellis; Alvin Berger; Gayle L. Crozier; Ester Fride; Raphael Mechoulam
The discovery of the endogenous cannabinoid N-arachidonoylethanolamine (anandamide) and other N-acylethanolamines (NAEs) in chocolate has led to speculation that the purported rewarding properties of cocoa are due to the presence of compounds “that could act as cannabinoid mimics”. This observation raises some important questions. First, are NAEs and anandamide, or the ‘endocannabinoid’ 2-arachidonoylglycerol (2-AG), present in widely consumed foods (such as milk) that are less ‘rewarding’ than chocolate? And second, to what extent do these compounds reach the bloodstream and exert pharmacological effects when consumed orally? We believe that the content of endocannabinoids in foods, and in cocoa in particular, is not sufficient to produce cannabis-like effects in mammals.
Lipids in Health and Disease | 2002
Alvin Berger; David M. Mutch; J. Bruce German; Matthew A. Roberts
BackgroundThe functions, actions, and regulation of tissue metabolism affected by the consumption of long chain polyunsaturated fatty acids (LC-PUFA) from fish oil and other sources remain poorly understood; particularly how LC-PUFAs affect transcription of genes involved in regulating metabolism. In the present work, mice were fed diets containing fish oil rich in eicosapentaenoic acid and docosahexaenoic acid, fungal oil rich in arachidonic acid, or the combination of both. Liver and hippocampus tissue were then analyzed through a combined gene expression- and lipid- profiling strategy in order to annotate the molecular functions and targets of dietary LC-PUFA.ResultsUsing microarray technology, 329 and 356 dietary regulated transcripts were identified in the liver and hippocampus, respectively. All genes selected as differentially expressed were grouped by expression patterns through a combined k-means/hierarchical clustering approach, and annotated using gene ontology classifications. In the liver, groups of genes were linked to the transcription factors PPARα, HNFα, and SREBP-1; transcription factors known to control lipid metabolism. The pattern of differentially regulated genes, further supported with quantitative lipid profiling, suggested that the experimental diets increased hepatic β-oxidation and gluconeogenesis while decreasing fatty acid synthesis. Lastly, novel hippocampal gene changes were identified.ConclusionsExamining the broad transcriptional effects of LC-PUFAs confirmed previously identified PUFA-mediated gene expression changes and identified novel gene targets. Gene expression profiling displayed a complex and diverse gene pattern underlying the biological response to dietary LC-PUFAs. The results of the studied dietary changes highlighted broad-spectrum effects on the major eukaryotic lipid metabolism transcription factors. Further focused studies, stemming from such transcriptomic data, will need to dissect the transcription factor signaling pathways to fully explain how fish oils and arachidonic acid achieve their specific effects on health.
The FASEB Journal | 2010
Wei Sha; Kerry Ann Da Costa; Leslie M. Fischer; Michael V. Milburn; Kay A. Lawton; Alvin Berger; Wei Jia; Steven H. Zeisel
Choline is an essential nutrient, and deficiency causes liver and muscle dysfunction. Common genetic variations alter the risk of developing organ dysfunction when choline deficient, probably by causing metabolic inefficiencies that should be detectable even while ingesting a normal choline‐adequate diet. We determined whether metabolomic profiling of plasma at baseline could predict whether humans will develop liver dysfunction when deprived of dietary choline. Fifty‐three participants were fed a diet containing 550 mg choline/70 kg/d for 10 d and then fed <50 mg choline/70 kg/d for up to 42 d. Participants who developed organ dysfunction on this diet were repleted with a choline‐adequate diet for ≥3 d. Plasma samples, obtained at baseline, end of depletion, and end of repletion, were used for targeted and nontargeted metabolomic profiling. Liver fat was assessed using magnetic resonance spectroscopy. Metabolomic profiling and targeted biochemical analyses were highly correlated for the analytes assessed by both procedures. In addition, we report relative concentration changes of other small molecules detected by the nontargeted metabolomic analysis after choline depletion. Finally, we show that metabolomic profiles of participants when they were consuming a control baseline diet could predict whether they would develop liver dysfunction when deprived of dietary choline.—Sha, W., da Costa, K., Fischer, L. M., Milburn, M. V., Lawton, K. A., Berger, A., Jia, W., Zeisel, S. H. Metabolomic profiling can predict which humans will develop liver dysfunction when deprived of dietary choline. FASEB J. 24, 2962–2975 (2010). www.fasebj.org
Chemical Research in Toxicology | 2009
Suryanarayana V. Vulimiri; Manoj Misra; Jonathan T. Hamm; Matthew W. Mitchell; Alvin Berger
Metabolomics is a technology for identifying and quantifying numerous biochemicals across metabolic pathways. Using this approach, we explored changes in biochemical profiles of human alveolar epithelial carcinoma (A549) cells following in vitro exposure to mainstream whole smoke (WS) aerosol as well as to wet total particulate matter (WTPM) or gas/vapor phase (GVP), the two constituent phases of WS from 2R4F Kentucky reference cigarettes. A549 cells were exposed to WTPM or GVP (expressed as WTPM mass equivalent GVP volumes) at 0, 5, 25, or 50 microg/mL or to WS from zero, two, four, and six cigarettes for 1 or 24 h. Cell pellets were analyzed for perturbations in biochemical profiles, with named biochemicals measured, analyzed, and reported in a heat map format, along with biochemical and physiological interpretations (mSelect, Metabolon Inc.). Both WTPM and GVP exposures likely decreased glycolysis (based on decreased glycolytic intermediaries) and increased oxidative stress and cell damage. Alterations in the Krebs cycle and the urea cycle were unique to WTPM exposure, while induction of hexosamines and alterations in lipid metabolism were unique to GVP exposure. WS altered glutathione (GSH) levels, enhanced polyamine and pantothenate levels, likely increased beta-oxidation of fatty acids, and increased phospholipid degradation marked by an increase in phosphoethanolamine. GSH, glutamine, and pantothenate showed the most significant changes with cigarette smoke exposure in A549 cells based on principal component analysis. Many of the changed biochemicals were previously reported to be altered by cigarette exposure, but the global metabolomic approach offers the advantage of observing changes to hundreds of biochemicals in a single experiment and the possibility for new discoveries. The metabolomic approach may thus be used as a screening tool to evaluate conventional and novel tobacco products offering the potential to reduce risks of smoking.
Lipids in Health and Disease | 2004
Alvin Berger; D Rein; E Kratky; Irina Monnard; H Hajjaj; I Meirim; C Piguet-Welsch; J Hauser; K Mace; P Niederberger
IntroductionThere has been renewed interest in mushroom medicinal properties. We studied cholesterol lowering properties of Ganoderma lucidum (Gl), a renowned medicinal species.ResultsOrganic fractions containing oxygenated lanosterol derivatives inhibited cholesterol synthesis in T9A4 hepatocytes. In hamsters, 5% Gl did not effect LDL; but decreased total cholesterol (TC) 9.8%, and HDL 11.2%. Gl (2.5 and 5%) had effects on several fecal neutral sterols and bile acids. Both Gl doses reduced hepatic microsomal ex-vivo HMG-CoA reductase activity. In minipigs, 2.5 Gl decreased TC, LDL- and HDL cholesterol 20, 27, and 18%, respectively (P < 0.05); increased fecal cholestanol and coprostanol; and decreased cholate.ConclusionsOverall, Gl has potential to reduce LDL cholesterol in vivo through various mechanisms. Next steps are to: fully characterize bioactive components in lipid soluble/insoluble fractions; evaluate bioactivity of isolated fractions; and examine human cholesterol lowering properties. Innovative new cholesterol-lowering foods and medicines containing Gl are envisioned.