Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Alvin Seiff is active.

Publication


Featured researches published by Alvin Seiff.


Nature | 2005

In situ measurements of the physical characteristics of Titan's environment

M. Fulchignoni; F. Ferri; F. Angrilli; Andrew J. Ball; A. Bar-Nun; M. A. Barucci; C. Bettanini; G. Bianchini; William J. Borucki; Giacomo Colombatti; M. Coradini; A. Coustenis; Stefano Debei; P. Falkner; G. Fanti; E. Flamini; V. Gaborit; R. Grard; M. Hamelin; A.-M. Harri; B. Hathi; I. Jernej; M. R. Leese; A. Lehto; P.F. Lion Stoppato; J. J. López-Moreno; T. Mäkinen; J. A. M. McDonnell; Christopher P. McKay; G.J. Molina-Cuberos

On the basis of previous ground-based and fly-by information, we knew that Titans atmosphere was mainly nitrogen, with some methane, but its temperature and pressure profiles were poorly constrained because of uncertainties in the detailed composition. The extent of atmospheric electricity (‘lightning’) was also hitherto unknown. Here we report the temperature and density profiles, as determined by the Huygens Atmospheric Structure Instrument (HASI), from an altitude of 1,400 km down to the surface. In the upper part of the atmosphere, the temperature and density were both higher than expected. There is a lower ionospheric layer between 140 km and 40 km, with electrical conductivity peaking near 60 km. We may also have seen the signature of lightning. At the surface, the temperature was 93.65 ± 0.25 K, and the pressure was 1,467 ± 1 hPa.


Journal of Geophysical Research | 1998

Thermal structure of Jupiter's atmosphere near the edge of a 5‐μm hot spot in the north equatorial belt

Alvin Seiff; Donn B. Kirk; T. C. D. Knight; Richard Young; J. D. Mihalov; Leslie A. Young; Frank S. Milos; Gerald Schubert; Robert C. Blanchard; David H. Atkinson

Thermal structure of the atmosphere of Jupiter was measured from 1029 km above to 133 km below the 1-bar level during entry and descent of the Galileo probe. The data confirm the hot exosphere observed by Voyager (∼900 K at 1 nanobar). The deep atmosphere, which reached 429 K at 22 bars, was close to dry adiabatic from 6 to 16 bars within an uncertainty ∼0.1 K/km. The upper atmosphere was dominated by gravity waves from the tropopause to the exosphere. Shorter waves were fully absorbed below 300 km, while longer wave amplitudes first grew, then were damped at the higher altitudes. A remarkably deep isothermal layer was found in the stratosphere from 90 to 290 km with T ∼ 160 K. Just above the tropopause at 260 mbar, there was a second isothermal region ∼25 km deep with T ∼ 112 K. Between 10 and 1000 mbar, the data substantially agree with Voyager radio occultations. The Voyager 1 equatorial occultation was similar in detail to the present sounding through the tropopause region. The Voyager IRIS average thermal structure in the north equatorial belt (NEB) approximates a smoothed fit to the present data between 0.03 and 400 mbar. Differences are partly a result of large differences in vertical resolution but may also reflect differences between a hot spot and the average NEB. At 15 4 bars, probe descent velocities derived from the data are consistently unsteady, suggesting the presence of large-scale turbulence or gravity waves. However, there was no evidence of turbulent temperature fluctuations >0.12 K. A conspicuous pause in the rate of decrease of descent velocity between 1.1 and 1.35 bars, where a disturbance was also detected by the two radio Doppler experiments, implies strong vertical flow in the cloud seen by the probe nephelometer. At p < 0.6 bar, measured temperatures were ∼3 K warmer than the dry adiabat, possible evidence of radiative warming. This could be associated with a tenuous cloud detected by the probe nephelometer above the 0.51 bar level. For an ammonia cloud to form at this level, the required abundance is ∼0.20 × solar.


Journal of Geophysical Research | 1999

Overview of the Mars Pathfinder Mission: Launch through landing, surface operations, data sets, and science results

Matthew P. Golombek; Robert C. Anderson; Jeffrey R. Barnes; James F. Bell; Nathan T. Bridges; Daniel T. Britt; J. Brückner; R. A. Cook; David Crisp; Joy A. Crisp; Thanasis E. Economou; William M. Folkner; Ronald Greeley; Robert M. Haberle; R. B. Hargraves; J.A. Harris; A. F. C. Haldemann; K. E. Herkenhoff; S. F. Hviid; R. Jaumann; James Richard Johnson; Pieter Kallemeyn; H. U. Keller; R. Kirk; J. M. Knudsen; Søren Ejling Larsen; Mark T. Lemmon; M. B. Madsen; J.A. Magalhaes; J. N. Maki

Mars Pathfinder successfully landed at Ares Vallis on July 4, 1997, deployed and navigated a small rover about 100 m clockwise around the lander, and collected data from three science instruments and ten technology experiments. The mission operated for three months and returned 2.3 Gbits of data, including over 16,500 lander and 550 rover images, 16 chemical analyses of rocks and soil, and 8.5 million individual temperature, pressure and wind measurements. Path-finder is the best known location on Mars, having been clearly identified with respect to other features on the surface by correlating five prominent horizon features and two small craters in lander images with those in high-resolution orbiter images and in inertial space from two-way ranging and Doppler tracking. Tracking of the lander has fixed the spin pole of Mars, determined the precession rate since Viking 20 years ago, and indicates a polar moment of inertia, which constrains a central metallic core to be between 1300 and ∼2000 km in radius. Dark rocks appear to be high in silica and geochemically similar to anorogenic andesites; lighter rocks are richer in sulfur and lower in silica, consistent with being coated with various amounts of dust. Rover and lander images show rocks with a variety of morphologies, fabrics and textures, suggesting a variety of rock types are present. Rounded pebbles and cobbles on the surface as well as rounded bumps and pits on some rocks indicate these rocks may be conglomerates (although other explanations are also possible), which almost definitely require liquid water to form and a warmer and wetter past. Air-borne dust is composed of composite silicate particles with a small fraction of a highly magnetic mineral, interpreted to be most likely maghemite; explanations suggest iron was dissolved from crustal materials during an active hydrologic cycle with maghemite freeze dried onto silicate dust grains. Remote sensing data at a scale of a kilometer or greater and an Earth analog correctly predicted a rocky plain safe for landing and roving with a variety of rocks deposited by catstrophic floods, which are relatively dust free. The surface appears to have changed little since it formed billions of years ago, with the exception that eolian activity may have deflated the surface by ∼3–7 cm, sculpted wind tails, collected sand into dunes, and eroded ventifacts (fluted and grooved rocks). Pathfinder found a dusty lower atmosphere, early morning water ice clouds, and morning near-surface air temperatures that changed abruptly with time and height. Small scale vortices, interpreted to be dust devils, were observed repeatedly in the afternoon by the meteorology instruments and have been imaged.


Science | 1976

Composition and Structure of the Martian Atmosphere: Preliminary Results from Viking 1

Alfred O. Nier; W. B. Hanson; Alvin Seiff; Michael B. McElroy; N. W. Spencer; R. J. Duckett; T. C. D. Knight; W. S. Cook

Results from the aeroshell-mounted neutral mass spectrometer on Viking I indicate that the upper atmosphere of Mars is composed mainly of CO2 with trace quantities of N2, Ar, O, O2, and CO. The mixing ratios by volume relative to CO2 for N2, Ar, and O2 are about 0.06, 0.015, and 0.003, respectively, at an altitude near 135 kilometers. Molecular oxygen (O2+) is a major component of the ionosphere according to results from the retarding potential analyzer. The atmosphere between 140 and 200 kilometers has an average temperature of about 180� � 20�K. Atmospheric pressure at the landing site for Viking 1 was 7.3 millibars at an air temperature of 241�K. The descent data are consistent with the view that CO2 should be the major constituent of the lower martian atmosphere.


Science | 1996

Structure of the Atmosphere of Jupiter: Galileo Probe Measurements

Alvin Seiff; Donn B. Kirk; T. C. D. Knight; J. D. Mihalov; Robert C. Blanchard; Richard E. Young; Gerald Schubert; Ulf von Zahn; Gerald A. Lehmacher; Frank S. Milos; Jerry Wang

Temperatures and pressures measured by the Galileo probe during parachute descent into Jupiters atmosphere essentially followed the dry adiabat between 0.41 and 24 bars, consistent with the absence of a deep water cloud and with the low water content found by the mass spectrometer. From 5 to 15 bars, lapse rates were slightly stable relative to the adiabat calculated for the observed H2/He ratio, which suggests that upward heat transport in that range is not attributable to simple radial convection. In the upper atmosphere, temperatures of >1000 kelvin at the 0.01-microbar level confirmed the hot exosphere that had been inferred from Voyager occultations. The thermal gradient increased sharply to 5 kelvin per kilometer at a reconstructed altitude of 350 kilometers, as was recently predicted. Densities at 1000 kilometers were 100 times those in the pre-encounter engineering model.


Journal of Geophysical Research | 1998

The Galileo Probe Doppler Wind Experiment: Measurement of the deep zonal winds on Jupiter

David H. Atkinson; James B. Pollack; Alvin Seiff

During its descent into the upper atmosphere of Jupiter, the Galileo probe transmitted data to the orbiter for 57.5 min. Accurate measurements of the probe radio frequency, driven by an ultrastable oscillator, allowed an accurate time history of the probe motions to be reconstructed. Removal from the probe radio frequency profile of known Doppler contributions, including the orbiter trajectory, the probe descent velocity, and the rotation of Jupiter, left a measurable frequency residual due to Jupiters zonal winds, and microdynamical motion of the probe from spin, swing under the parachute, atmospheric turbulence, and aerodynamic buffeting. From the assumption of the dominance of the zonal horizontal winds, the frequency residuals were inverted and resulted in the first in situ measurements of the vertical profile of Jupiters deep zonal winds. A number of error sources with the capability of corrupting the frequency measurements or the interpretation of the frequency residuals were considered using reasonable assumptions and calibrations from prelaunch and in-flight testing. It is found that beneath the cloud tops (about 700 mbar) the winds are prograde and rise rapidly to 170 m/s at 4 bars. Beyond 4 bars to the depth at which the link with the probe was lost, nearly 21 bars, the winds remain constant and strong. Corrections for the high temperatures encountered by the probe have recently been completed and provide no evidence of diminishing or strengthening of the zonal wind profile in the deeper regions explored by the Galileo probe.


Science | 1986

Overview of VEGA Venus Balloon in Situ Meteorological Measurements

R. Z. Sagdeev; V. M. Linkin; V. V. Kerzhanovich; A. N. Lipatov; A. A. Shurupov; J. E. Blamont; D. Crisp; A. P. Ingersoll; L. S. Elson; R. A. Preston; C. E. Hildebrand; Boris Ragent; Alvin Seiff; Richard E. Young; G. Petit; L. Boloh; Yu. N. Alexandrov; N. A. Armand; R. V. Bakitko; A. S. Selivanov

The VEGA balloons made in situ measurements of pressure, temperature, vertical wind velocity, ambient light, frequency of lightning, and cloud particle backscatter. Both balloons encountered highly variable atmospheric conditions, with periods of intense vertical winds occurring sporadically throughout their flights. Downward winds as large as 3.5 meters per second occasionally forced the balloons to descend as much as 2.5 kilometers below their equilibrium float altitudes. Large variations, in pressure, temperature, ambient light level, and cloud particle backscatter (VEGA-1 only) correlated well during these excursions, indicating that these properties were strong functions of altitude in those parts of the middle cloud layer sampled by the balloons.


Icarus | 1973

PAET, an entry probe experiment in the Earth's atmosphere

Alvin Seiff; David E. Reese; Simon C. Sommer; Donn B. Kirk; Ellis E. Whiting; Hasso B. Niemann

Abstract On June 20, 1971, an instrumented probe designated PAET entered the atmosphere near Bermuda at a velocity of 6.6 km/sec carrying experiments designed for use at planets other than the Earth. Instruments to measure in situ the structure and composition of the atmosphere included accelerometers, pressure and temperature sensors, a mass spectrometer, and a radiometer (to sense characteristic emission from the probe shock layer at high speeds). The experiments were largely successful. The thermal structure of the atmosphere, including two major reversals in gradient, was shown to be well defined to an altitude of 80 km by comparison with more conventional meteorological soundings. The atmospheric mean molecular weight was defined within a percent by the structure experiment. The radiometers defined the bulk composition accurately and the trace quantity of CO 2 to one significant figure. The mass spectrometer functioned properly, but failed to give the correct composition because of problems in its sampling system. Oxygen was depleted, apparently by chemical reactions before reaching the spectrometer, and the inlet leak conductance was reduced from its preflight value by an order of magnitude. There is reason to believe that contamination by large molecules from the heat shield was responsible. This experiment should stimulate intensive laboratory work on sampling systems, so that similar problems do not arise in measurements of atmospheric composition at the planets. Results of auxiliary experiments to measure atmospheric water vapor, vehicle dynamics and heating, and communications blackout are also given.


Space Science Reviews | 2003

THE CHARACTERISATION OF TITAN'S ATMOSPHERIC PHYSICAL PROPERTIES BY THE HUYGENS ATMOSPHERIC STRUCTURE INSTRUMENT (HASI)

Marcello Fulchignoni; F. Ferri; F. Angrilli; Akiva Bar-Nun; M. A. Barucci; G. Bianchini; William J. Borucki; M. Coradini; Athena Coustenis; P. Falkner; E. Flamini; R. Grard; M. Hamelin; A.-M. Harri; G.W. Leppelmeier; J. J. Lopez-Moreno; J. A. M. McDonnell; Christopher P. McKay; F.H. Neubauer; A. Pedersen; Giovanni Picardi; V. Pirronello; R. Rodrigo; K. Schwingenschuh; Alvin Seiff; V. Vanzani; John C. Zarnecki

The Huygens Atmospheric Structure Instrument (HASI) is a multi-sensor package which has been designed to measure the physical quantities characterising the atmosphere of Titan during the Huygens probe descent on Titan and at the surface. HASI sensors are devoted to the study of Titans atmospheric structure and electric properties, and to provide information on its surface, whether solid or liquid.


Science | 1996

Galileo Doppler Measurements of the Deep Zonal Winds at Jupiter

David H. Atkinson; James B. Pollack; Alvin Seiff

Changes in the speed of the Galileo probe caused by zonal winds created a small but measurable Doppler effect in the probe relay carrier frequency. Analysis of the probe relay link frequency allows direct measurements of the speed of Jupiters zonal winds beneath the cloud tops. The deep winds were prograde and strong, reaching a sustained 190 to 200 meters per second at an altitude marked by a pressure of 24 bars. The depth and strength of the zonal winds severely constrain dynamic modeling of the deeper layers and begin to rule out many shallow weather theories.

Collaboration


Dive into the Alvin Seiff's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Robert M. Haberle

Goddard Space Flight Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

John T. Schofield

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David Crisp

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge