Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Ama-Tawiah Essilfie is active.

Publication


Featured researches published by Ama-Tawiah Essilfie.


Thorax | 2012

Combined Haemophilus influenzae respiratory infection and allergic airways disease drives chronic infection and features of neutrophilic asthma

Ama-Tawiah Essilfie; Jodie L. Simpson; Margaret Dunkley; Lucy Morgan; Brian Oliver; Peter G. Gibson; Paul S. Foster; Philip M. Hansbro

Background 20–30% of patients with asthma have neutrophilic airway inflammation and reduced responsiveness to steroid therapy. They often have chronic airway bacterial colonisation and Haemophilus influenzae is one of the most commonly isolated bacteria. The relationship between chronic airway colonisation and the development of steroid-resistant neutrophilic asthma is unclear. Objectives To investigate the relationship between H influenzae respiratory infection and neutrophilic asthma using mouse models of infection and ovalbumin (OVA)-induced allergic airways disease. Methods BALB/c mice were intratracheally infected with H influenzae (day 10), intraperitoneally sensitised (day 0) and intranasally challenged (day 12–15) with OVA. Treatment groups were administered dexamethasone intranasally during OVA challenge. Infection, allergic airways disease, steroid sensitivity and immune responses were assessed (days 11, 16 and 21). Results The combination of H influenzae infection and allergic airways disease resulted in chronic lung infection that was detected on days 11, 16 and 21 (21, 26 and 31 days after infection). Neutrophilic allergic airways disease and T helper 17 cell development were induced, which did not require active infection. Importantly, all features of neutrophilic allergic airways disease were steroid resistant. Toll-like receptor 4 expression and activation of phagocytes was reduced, but most significantly the influx and/or development of phagocytosing neutrophils and macrophages into the airways was inhibited. Conclusions The combination of infection and allergic airways disease promotes bacterial persistence, leading to the development of a phenotype similar to steroid-resistant neutrophilic asthma and which may result from dysfunction in innate immune cells. This indicates that targeting bacterial infection in steroid-resistant asthma may have therapeutic benefit.


PLOS Pathogens | 2011

Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

Ama-Tawiah Essilfie; Jodie L. Simpson; Jay C. Horvat; Julie A. Preston; Margaret Dunkley; Paul S. Foster; Peter G. Gibson; Philip M. Hansbro

A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.


Thorax | 2015

Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma

Ama-Tawiah Essilfie; Jay C. Horvat; Richard Y. Kim; Jemma R. Mayall; James Pinkerton; Emma L. Beckett; Malcolm R. Starkey; Jodie L. Simpson; Paul S. Foster; Peter G. Gibson; Philip M. Hansbro

Background Steroid-insensitive endotypes of asthma are an important clinical problem and effective therapies are required. They are associated with bacterial infection and non-eosinophilic inflammatory responses in the asthmatic lung. Macrolide therapy is effective in steroid-insensitive endotypes, such as non-eosinophilic asthma. However, whether the effects of macrolides are due to antimicrobial or anti-inflammatory mechanisms is not known. Objective To determine and assess the efficacy of macrolide (ie, clarithromycin) and non-macrolide (ie, amoxicillin) antibiotic treatments in experimental models of infection-induced, severe, steroid-insensitive neutrophilic allergic airways disease (SSIAAD), compared with steroid-sensitive AAD and to delineate the antimicrobial and anti-inflammatory effects of macrolide therapy. Methods We developed and used novel mouse models of Chlamydia and Haemophilus lung infection-induced SSIAAD. We used these models to investigate the effects of clarithromycin and amoxicillin treatment on immune responses and airways hyper-responsiveness (AHR) in Ova-induced, T helper lymphocyte (Th) 2 -associated steroid-sensitive AAD and infection-induced Th1/Th17-associated SSIAAD compared with dexamethasone treatment. Results Clarithromycin and amoxicillin had similar antimicrobial effects on infection. Amoxicillin did attenuate some features, but did not broadly suppress either form of AAD. It did restore steroid sensitivity in SSIAAD by reducing infection. In contrast, clarithromycin alone widely suppressed inflammation and AHR in both steroid-sensitive AAD and SSIAAD. This occurred through reductions in Th2 responses that drive steroid-sensitive eosinophilic AAD and tumour necrosis factor α and interleukin 17 responses that induce SSIAAD. Conclusions Macrolides have broad anti-inflammatory effects in AAD that are likely independent of their antimicrobial effects. The specific responses that are suppressed are dependent upon the responses that dominate during AAD.


Mucosal Immunology | 2013

Constitutive production of IL-13 promotes early-life Chlamydia respiratory infection and allergic airway disease.

Malcolm R. Starkey; Ama-Tawiah Essilfie; Jay C. Horvat; R.Y. Kim; Duc H. Nguyen; Kenneth W. Beagley; Joerg Mattes; Paul S. Foster; Philip M. Hansbro

Deleterious responses to pathogens during infancy may contribute to infection and associated asthma. Chlamydia respiratory infections in early life are common causes of pneumonia and lead to reduced lung function and asthma. We investigated the role of interleukin-13 (IL-13) in promoting early-life Chlamydia respiratory infection, infection-induced airway hyperresponsiveness (AHR), and severe allergic airway disease (AAD). Infected infant Il13−/− mice had reduced infection, inflammation, and mucus-secreting cell hyperplasia. Surprisingly, infection of wild-type (WT) mice did not increase IL-13 production but reduced IL-13Rα2 decoy receptor levels compared with sham-inoculated controls. Infection of WT but not Il13−/− mice induced persistent AHR. Infection and associated pathology were restored in infected Il13−/− mice by reconstitution with IL-13. Stat6−/− mice were also largely protected. Neutralization of IL-13 during infection prevented subsequent infection-induced severe AAD. Thus, early-life Chlamydia respiratory infection reduces IL-13Rα2 production, which may enhance the effects of constitutive IL-13 and promote more severe infection, persistent AHR, and AAD.


Current Opinion in Pharmacology | 2013

Murine models of infectious exacerbations of airway inflammation

Malcolm R. Starkey; Andrew G. Jarnicki; Ama-Tawiah Essilfie; Shaan L. Gellatly; Richard Y. Kim; Alexandra C. Brown; Paul S. Foster; Jay C. Horvat; Philip M. Hansbro

Airway inflammation underpins the pathogenesis of the major human chronic respiratory diseases. It is now well recognized that respiratory infections with bacteria and viruses are important in the induction, progression and exacerbation of these diseases. There are no effective therapies that prevent or reverse these events. The development and use of mouse models are proving valuable in understanding the role of infection in disease pathogenesis. They have recently been used to show that infections in early life alter immune responses and lung structure to increase asthma severity, and alter immune responses in later life to induce steroid resistance. Infection following smoke exposure or in experimental chronic obstructive pulmonary disease exacerbates inflammation and remodeling, and worsens cystic fibrosis. Further exploration of these models will facilitate the identification of new therapeutic approaches and the testing of new preventions and treatments.


PLOS ONE | 2015

Nontypeable Haemophilus influenzae Induces Sustained Lung Oxidative Stress and Protease Expression

Paul Thomas King; Roleen Sharma; Kim M. O’Sullivan; Stavros Selemidis; Steven Lim; Naghmeh Radhakrishna; Camden Lo; Jyotika Prasad; Judy M. Callaghan; Peter McLaughlin; Michael Farmer; Daniel P. Steinfort; Barton R. Jennings; James Ngui; Bradley Rs Broughton; Belinda J. Thomas; Ama-Tawiah Essilfie; Michael J. Hickey; Peter Holmes; Philip M. Hansbro; Philip G. Bardin; Stephen R. Holdsworth

Nontypeable Haemophilus influenzae (NTHi) is a prevalent bacterium found in a variety of chronic respiratory diseases. The role of this bacterium in the pathogenesis of lung inflammation is not well defined. In this study we examined the effect of NTHi on two important lung inflammatory processes 1), oxidative stress and 2), protease expression. Bronchoalveolar macrophages were obtained from 121 human subjects, blood neutrophils from 15 subjects, and human-lung fibroblast and epithelial cell lines from 16 subjects. Cells were stimulated with NTHi to measure the effect on reactive oxygen species (ROS) production and extracellular trap formation. We also measured the production of the oxidant, 3-nitrotyrosine (3-NT) in the lungs of mice infected with this bacterium. NTHi induced widespread production of 3-NT in mouse lungs. This bacterium induced significantly increased ROS production in human fibroblasts, epithelial cells, macrophages and neutrophils; with the highest levels in the phagocytic cells. In human macrophages NTHi caused a sustained, extracellular production of ROS that increased over time. The production of ROS was associated with the formation of macrophage extracellular trap-like structures which co-expressed the protease metalloproteinase-12. The formation of the macrophage extracellular trap-like structures was markedly inhibited by the addition of DNase. In this study we have demonstrated that NTHi induces lung oxidative stress with macrophage extracellular trap formation and associated protease expression. DNase inhibited the formation of extracellular traps.


Mucosal Immunology | 2014

Tumor necrosis factor-related apoptosis-inducing ligand translates neonatal respiratory infection into chronic lung disease.

Malcolm R. Starkey; Duc H. Nguyen; Ama-Tawiah Essilfie; R.Y. Kim; Luke Hatchwell; Adam Collison; Hideo Yagita; Paul S. Foster; Jay C. Horvat; Joerg Mattes; Philip M. Hansbro

Respiratory infections in early life can lead to chronic respiratory disease. Chlamydia infections are common causes of respiratory disease, particularly pneumonia in neonates, and are linked to permanent reductions in pulmonary function and the induction of asthma. However, the immune responses that protect against early-life infection and the mechanisms that lead to chronic lung disease are incompletely understood. Here we identify novel roles for tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) in promoting Chlamydia respiratory infection-induced pathology in early life, and subsequent chronic lung disease. By infecting TRAIL-deficient neonatal mice and using neutralizing antibodies against this factor and its receptors in wild-type mice, we demonstrate that TRAIL is critical in promoting infection-induced histopathology, inflammation, and mucus hypersecretion, as well as subsequent alveolar enlargement and impaired lung function. This suggests that therapeutic agents that target TRAIL or its receptors may be effective treatments for early-life respiratory infections and associated chronic lung disease.


PLOS ONE | 2012

Chlamydia muridarum Lung Infection in Infants Alters Hematopoietic Cells to Promote Allergic Airway Disease in Mice

Malcolm R. Starkey; Richard Y. Kim; Emma L. Beckett; Heidi C Schilter; Doris Shim; Ama-Tawiah Essilfie; Duc H. Nguyen; Kenneth W. Beagley; Joerg Mattes; Charles R. Mackay; Jay C. Horvat; Philip M. Hansbro

Background Viral and bacterial respiratory tract infections in early-life are linked to the development of allergic airway inflammation and asthma. However, the mechanisms involved are not well understood. We have previously shown that neonatal and infant, but not adult, chlamydial lung infections in mice permanently alter inflammatory phenotype and physiology to increase the severity of allergic airway disease by increasing lung interleukin (IL)-13 expression, mucus hyper-secretion and airway hyper-responsiveness. This occurred through different mechanisms with infection at different ages. Neonatal infection suppressed inflammatory responses but enhanced systemic dendritic cell:T-cell IL-13 release and induced permanent alterations in lung structure (i.e., increased the size of alveoli). Infant infection enhanced inflammatory responses but had no effect on lung structure. Here we investigated the role of hematopoietic cells in these processes using bone marrow chimera studies. Methodology/Principal Findings Neonatal (<24-hours-old), infant (3-weeks-old) and adult (6-weeks-old) mice were infected with C. muridarum. Nine weeks after infection bone marrow was collected and transferred into recipient age-matched irradiated naïve mice. Allergic airway disease was induced (8 weeks after adoptive transfer) by sensitization and challenge with ovalbumin. Reconstitution of irradiated naïve mice with bone marrow from mice infected as neonates resulted in the suppression of the hallmark features of allergic airway disease including mucus hyper-secretion and airway hyper-responsiveness, which was associated with decreased IL-13 levels in the lung. In stark contrast, reconstitution with bone marrow from mice infected as infants increased the severity of allergic airway disease by increasing T helper type-2 cell cytokine release (IL-5 and IL-13), mucus hyper-secretion, airway hyper-responsiveness and IL-13 levels in the lung. Reconstitution with bone marrow from infected adult mice had no effects. Conclusions These results suggest that an infant chlamydial lung infection results in long lasting alterations in hematopoietic cells that increases the severity of allergic airway disease in later-life.


Respirology | 2016

COPD is characterized by increased detection of Haemophilus influenzae, Streptococcus pneumoniae and a deficiency of Bacillus species.

Jodie L. Simpson; Katherine J. Baines; Jay C. Horvat; Ama-Tawiah Essilfie; Alexandra C. Brown; Melinda Tooze; Vanessa M. McDonald; Peter G. Gibson; Philip M. Hansbro

Chronic obstructive pulmonary disease (COPD) is characterized by progressive airflow limitation and inflammation. Airway bacterial colonization is increased in COPD; however, the role of potentially pathogenic and non‐pathogenic bacteria in the pathogenesis of disease is unclear. This study characterized the presence of bacteria in a well‐characterized cohort of adults with COPD and healthy controls.


PLOS ONE | 2013

Activation of Olfactory Receptors on Mouse Pulmonary Macrophages Promotes Monocyte Chemotactic Protein-1 Production

Jing Jing Li; Hock L. Tay; Maximilian Plank; Ama-Tawiah Essilfie; Philip M. Hansbro; Paul S. Foster; Ming Yang

Background Emerging evidence suggests that non-olfactory tissues and cells can express olfactory receptors (ORs), however, the exact function of ectopic OR expression remains unknown. We have previously shown in mouse models that a unique cooperation between interferon-γ (IFN-γ) and lipopolysaccharide (LPS) drives the activation of pulmonary macrophages and leads to the induction of pathogenic responses in the respiratory tract. Further, through gene array studies, we have shown that activation of macrophages by these molecules results in the selective expression of a number of ORs. In this study, we validated the expression of these ORs in mouse airway and pulmonary macrophages in response to IFN-γ and LPS (γ/LPS) stimulation, and further explored the effect of odorant stimulation on macrophage function. Methodology/Principal Findings OR expression in airway and pulmonary macrophages in response to IFN-γ, LPS or γ/LPS treatments was assessed by microarray and validated by q-PCR. OR expression (e.g. OR622) on macrophages was confirmed by visualization in immunofluoresence assays. Functional responses to odorants were assessed by quantifying inflammatory cytokine and chemokine expression using q-PCR and cell migration was assessed by a modified Boyden chamber migration assay. Our results demonstrate that eight ORs are expressed at basal levels in both airway and pulmonary macrophages, and that γ/LPS stimulation cooperatively increased this expression. Pulmonary macrophages exposed to the combined treatment of γ/LPS+octanal (an odorant) exhibited a 3-fold increase in MCP-1 protein production, compared to cells treated with γ/LPS alone. Supernatants from γ/LPS+octanal exposed macrophages also increased macrophage migration in vitro. Conclusions/Significance Eight different ORs are expressed at basal levels in pulmonary macrophages and expression is upregulated by the synergistic action of γ/LPS. Octanal stimulation further increased MCP-1 production and the motility of macrophages. Our results suggest that ORs may mediate macrophage function by regulating MCP-1 production and cell migration.

Collaboration


Dive into the Ama-Tawiah Essilfie's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Joerg Mattes

University of Newcastle

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge