Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jay C. Horvat is active.

Publication


Featured researches published by Jay C. Horvat.


Immunology | 2008

Immunological decision-making: how does the immune system decide to mount a helper T-cell response?

Gerard E. Kaiko; Jay C. Horvat; Kenneth W. Beagley; Philip M. Hansbro

Aberrant T‐cell responses underpin a range of diseases, including asthma and allergy and autoimmune diseases. Pivotal immune elements of these diseases are the development of antigen‐specific effector T‐helper type 2 (Th2) cells, Th1 cells, or the recently defined Th17 cells that are associated with the clinical features and disease progression. In order to identify crucial processes in the pathogenesis of these diseases it is critical to understand how the development of these T cells occurs. The phenotype of a polarized T‐cell that differentiates from a naïve precursor is determined by the complex interaction of antigen‐presenting cells with naïve T cells and involves a multitude of factors, including the dominant cytokine environment, costimulatory molecules, type and load of antigen presented and a plethora of signaling cascades. The decision to take the immune response in a certain direction is not made by one signal alone, instead many different elements act synergistically, antagonistically and through positive feedback loops to activate a Th1, Th2, or Th17 immune response. The elucidation of the mechanisms of selection of T‐cell phenotype will facilitate the development of therapeutic strategies to intervene in the development of deleterious T‐cell responses. This review will focus on the pathways and key factors responsible for the differentiation of the various subsets of effector CD4 T cells. We will primarily discuss what is known of the Th1 and Th2 differentiation pathways, while also reviewing the emerging research on Th17 differentiation.


The Journal of Allergy and Clinical Immunology | 2013

A new short-term mouse model of chronic obstructive pulmonary disease identifies a role for mast cell tryptase in pathogenesis.

Emma L. Beckett; Richard L. Stevens; Andrew G. Jarnicki; Richard Y. Kim; Irwan Hanish; Nicole G. Hansbro; Andrew Deane; Simon Keely; Jay C. Horvat; Ming Yang; Brian Oliver; Nico van Rooijen; Mark D. Inman; Roberto Adachi; Roy J. Soberman; Sahar Hamadi; Peter Wark; Paul S. Foster; Philip M. Hansbro

BACKGROUND Cigarette smoke-induced chronic obstructive pulmonary disease (COPD) is a life-threatening inflammatory disorder of the lung. The development of effective therapies for COPD has been hampered by the lack of an animal model that mimics the human disease in a short timeframe. OBJECTIVES We sought to create an early-onset mouse model of cigarette smoke-induced COPD that develops the hallmark features of the human condition in a short time-frame. We also sought to use this model to better understand pathogenesis and the roles of macrophages and mast cells (MCs) in patients with COPD. METHODS Tightly controlled amounts of cigarette smoke were delivered to the airways of mice, and the development of the pathologic features of COPD was assessed. The roles of macrophages and MC tryptase in pathogenesis were evaluated by using depletion and in vitro studies and MC protease 6-deficient mice. RESULTS After just 8 weeks of smoke exposure, wild-type mice had chronic inflammation, mucus hypersecretion, airway remodeling, emphysema, and reduced lung function. These characteristic features of COPD were glucocorticoid resistant and did not spontaneously resolve. Systemic effects on skeletal muscle and the heart and increased susceptibility to respiratory tract infections also were observed. Macrophages and tryptase-expressing MCs were required for the development of COPD. Recombinant MC tryptase induced proinflammatory responses from cultured macrophages. CONCLUSION A short-term mouse model of cigarette smoke-induced COPD was developed in which the characteristic features of the disease were induced more rapidly than in existing models. The model can be used to better understand COPD pathogenesis, and we show a requirement for macrophages and tryptase-expressing MCs.


Science | 2013

Interferon-ε Protects the Female Reproductive Tract from Viral and Bacterial Infection

Ka Yee Fung; Niamh E. Mangan; Helen Cumming; Jay C. Horvat; Jemma R. Mayall; Sebastian A. Stifter; Nicole Anne De Weerd; Laila C. Roisman; Jamie Rossjohn; Sarah A. Robertson; John E. Schjenken; Belinda S. Parker; Caroline E. Gargett; Hong P.T. Nguyen; Daniel J. J. Carr; Philip M. Hansbro; Paul J. Hertzog

A Role for IFN-ɛ Type I interferons (IFNs) are critical cytokines involved in host defense against pathogens, particularly viruses. IFN-ɛ is an IFN-like gene encoded within the type I IFN locus in mice and humans whose function has not been characterized. Fung et al. (p. 1088) created mice with a genetic deletion in Ifn-ɛ and found that, like other type I IFNs, IFN-ɛ signals through the IFN-α receptors 1 and 2. However, unlike these other cytokines, which are primarily expressed by immune cells and are induced upon immune cell triggering, IFN-ɛ was expressed exclusively by epithelial cells of the female reproductive tract in both mice and humans and its expression was hormonally regulated. IFN-ɛ–deficient mice were more susceptible to infection with herpes simplex virus 2 and Chlamydia muridarum, two common sexually transmitted pathogens. The cytokine interferon-ε is expressed in the female reproductive tract and protects against sexually transmitted diseases. The innate immune system senses pathogens through pattern-recognition receptors (PRRs) that signal to induce effector cytokines, such as type I interferons (IFNs). We characterized IFN-ε as a type I IFN because it signaled via the Ifnar1 and Ifnar2 receptors to induce IFN-regulated genes. In contrast to other type I IFNs, IFN-ε was not induced by known PRR pathways; instead, IFN-ε was constitutively expressed by epithelial cells of the female reproductive tract (FRT) and was hormonally regulated. Ifn-ε–deficient mice had increased susceptibility to infection of the FRT by the common sexually transmitted infections (STIs) herpes simplex virus 2 and Chlamydia muridarum. Thus, IFN-ε is a potent antipathogen and immunoregulatory cytokine that may be important in combating STIs that represent a major global health and socioeconomic burden.


Pharmacology & Therapeutics | 2008

Understanding the mechanisms of viral induced asthma : New therapeutic directions

Nicole G. Hansbro; Jay C. Horvat; Peter Wark; Philip M. Hansbro

Abstract Asthma is a common and debilitating disease that has substantially increased in prevalence in Western Societies in the last 2 decades. Respiratory tract infections by respiratory syncytial virus (RSV) and rhinovirus (RV) are widely implicated as common causes of the induction and exacerbation of asthma. These infections in early life are associated with the induction of wheeze that may progress to the development of asthma. Infections may also promote airway inflammation and enhance T helper type 2 lymphocyte (Th2 cell) responses that result in exacerbations of established asthma. The mechanisms of how RSV and RV induce and exacerbate asthma are currently being elucidated by clinical studies, in vitro work with human cells and animal models of disease. This research has led to many potential therapeutic strategies and, although none are yet part of clinical practise, they show much promise for the prevention and treatment of viral disease and subsequent asthma.


PLOS Pathogens | 2011

Haemophilus influenzae infection drives IL-17-mediated neutrophilic allergic airways disease.

Ama-Tawiah Essilfie; Jodie L. Simpson; Jay C. Horvat; Julie A. Preston; Margaret Dunkley; Paul S. Foster; Peter G. Gibson; Philip M. Hansbro

A subset of patients with stable asthma has prominent neutrophilic and reduced eosinophilic inflammation, which is associated with attenuated airways hyper-responsiveness (AHR). Haemophilus influenzae has been isolated from the airways of neutrophilic asthmatics; however, the nature of the association between infection and the development of neutrophilic asthma is not understood. Our aim was to investigate the effects of H. influenzae respiratory infection on the development of hallmark features of asthma in a mouse model of allergic airways disease (AAD). BALB/c mice were intraperitoneally sensitized to ovalbumin (OVA) and intranasally challenged with OVA 12–15 days later to induce AAD. Mice were infected with non-typeable H. influenzae during or 10 days after sensitization, and the effects of infection on the development of key features of AAD were assessed on day 16. T-helper 17 cells were enumerated by fluorescent-activated cell sorting and depleted with anti-IL-17 neutralizing antibody. We show that infection in AAD significantly reduced eosinophilic inflammation, OVA-induced IL-5, IL-13 and IFN-γ responses and AHR; however, infection increased airway neutrophil influx in response to OVA challenge. Augmented neutrophilic inflammation correlated with increased IL-17 responses and IL-17 expressing macrophages and neutrophils (early, innate) and T lymphocytes (late, adaptive) in the lung. Significantly, depletion of IL-17 completely abrogated infection-induced neutrophilic inflammation during AAD. In conclusion, H. influenzae infection synergizes with AAD to induce Th17 immune responses that drive the development of neutrophilic and suppress eosinophilic inflammation during AAD. This results in a phenotype that is similar to neutrophilic asthma. Infection-induced neutrophilic inflammation in AAD is mediated by IL-17 responses.


Journal of Immunology | 2010

Chlamydial respiratory infection during allergen sensitization drives neutrophilic allergic airways disease.

Jay C. Horvat; Malcolm R. Starkey; Richard Y. Kim; Kenneth W. Beagley; Julie A. Preston; Peter G. Gibson; Paul S. Foster; Philip M. Hansbro

Neutrophilic asthma is a prevalent, yet recently described phenotype of asthma. It is characterized by neutrophilic rather than eosinophilic airway inflammation and airways hyperresponsiveness (AHR) and may have an infectious origin. Chlamydial respiratory infections are associated with asthma, but how these Th1-inducing bacteria influence Th2-mediated asthma remains unknown. The effects of chlamydial infection on the development of asthma were investigated using a BALB/c mouse model of OVA-induced allergic airways disease (AAD). The effects of current and resolved Chlamydia muridarum infection during OVA sensitization on AAD were assessed and compared with uninfected and nonsensitized controls. Current, but not resolved, infection attenuated hallmark features of AAD: pulmonary eosinophil influx, T cell production of IL-5, mucus-secreting cell hyperplasia, and AHR. Current infection also induced robust OVA-driven neutrophilic inflammation and IFN-γ release from T cells. The phenotype of suppressed but persistent Th2 responses in association with enhanced neutrophilia is reminiscent of neutrophilic asthma. This phenotype was also characterized by increased pulmonary IL-12 and IL-17 expression and activation of APCs, as well as by reduced thymus- and activation-regulated chemokine. Inhibition of pulmonary neutrophil influx during infection blocked OVA-induced neutrophilic inflammation and T cell IFN-γ production and reversed the suppressive effects on mucus-secreting cell hyperplasia and AHR during AAD. These changes correlated with decreased IL-12 and IL-17 expression, increased thymus- and activation-regulated chemokine and altered APC activation. Blocking IFN-γ and IL-17 during OVA challenge had no effect. Thus, active chlamydial respiratory infection during sensitization enhances subsequent neutrophilic inflammation and Th1/Th17 responses during allergen exposure and may have a role in the pathogenesis of neutrophilic asthma.


European Respiratory Journal | 2011

Streptococcus pneumoniae infection suppresses allergic airways disease by inducing regulatory T-cells

Julie A. Preston; Alison N. Thorburn; Malcolm R. Starkey; Emma L. Beckett; Jay C. Horvat; Margaret A. Wade; Brendan J. O'Sullivan; Ranjeny Thomas; Kenneth W. Beagley; Peter G. Gibson; Paul S. Foster; Philip M. Hansbro

An inverse association exists between some bacterial infections and the prevalence of asthma. We investigated whether Streptococcus pneumoniae infection protects against asthma using mouse models of ovalbumin (OVA)-induced allergic airway disease (AAD). Mice were intratracheally infected or treated with killed S. pneumoniae before, during or after OVA sensitisation and subsequent challenge. The effects of S. pneumoniae on AAD were assessed. Infection or treatment with killed S. pneumoniae suppressed hallmark features of AAD, including antigen-specific T-helper cell (Th) type 2 cytokine and antibody responses, peripheral and pulmonary eosinophil accumulation, goblet cell hyperplasia, and airway hyperresponsiveness. The effect of infection on the development of specific features of AAD depended on the timing of infection relative to allergic sensitisation and challenge. Infection induced significant increases in regulatory T-cell (Treg) numbers in lymph nodes, which correlated with the degree of suppression of AAD. Tregs reduced T-cell proliferation and Th2 cytokine release. The suppressive effects of infection were reversed by anti-CD25 treatment. Respiratory infection or treatment with S. pneumoniae attenuates allergic immune responses and suppresses AAD. These effects may be mediated by S. pneumoniae-induced Tregs. This identifies the potential for the development of therapeutic agents for asthma from S. pneumoniae.


Thorax | 2015

Macrolide therapy suppresses key features of experimental steroid-sensitive and steroid-insensitive asthma

Ama-Tawiah Essilfie; Jay C. Horvat; Richard Y. Kim; Jemma R. Mayall; James Pinkerton; Emma L. Beckett; Malcolm R. Starkey; Jodie L. Simpson; Paul S. Foster; Peter G. Gibson; Philip M. Hansbro

Background Steroid-insensitive endotypes of asthma are an important clinical problem and effective therapies are required. They are associated with bacterial infection and non-eosinophilic inflammatory responses in the asthmatic lung. Macrolide therapy is effective in steroid-insensitive endotypes, such as non-eosinophilic asthma. However, whether the effects of macrolides are due to antimicrobial or anti-inflammatory mechanisms is not known. Objective To determine and assess the efficacy of macrolide (ie, clarithromycin) and non-macrolide (ie, amoxicillin) antibiotic treatments in experimental models of infection-induced, severe, steroid-insensitive neutrophilic allergic airways disease (SSIAAD), compared with steroid-sensitive AAD and to delineate the antimicrobial and anti-inflammatory effects of macrolide therapy. Methods We developed and used novel mouse models of Chlamydia and Haemophilus lung infection-induced SSIAAD. We used these models to investigate the effects of clarithromycin and amoxicillin treatment on immune responses and airways hyper-responsiveness (AHR) in Ova-induced, T helper lymphocyte (Th) 2 -associated steroid-sensitive AAD and infection-induced Th1/Th17-associated SSIAAD compared with dexamethasone treatment. Results Clarithromycin and amoxicillin had similar antimicrobial effects on infection. Amoxicillin did attenuate some features, but did not broadly suppress either form of AAD. It did restore steroid sensitivity in SSIAAD by reducing infection. In contrast, clarithromycin alone widely suppressed inflammation and AHR in both steroid-sensitive AAD and SSIAAD. This occurred through reductions in Th2 responses that drive steroid-sensitive eosinophilic AAD and tumour necrosis factor α and interleukin 17 responses that induce SSIAAD. Conclusions Macrolides have broad anti-inflammatory effects in AAD that are likely independent of their antimicrobial effects. The specific responses that are suppressed are dependent upon the responses that dominate during AAD.


PLOS Pathogens | 2011

Interleukin-13 promotes susceptibility to chlamydial infection of the respiratory and genital tracts.

Kelly L. Asquith; Jay C. Horvat; Gerard E. Kaiko; Alison J. Carey; Kenneth W. Beagley; Philip M. Hansbro; Paul S. Foster

Chlamydiae are intracellular bacteria that commonly cause infections of the respiratory and genital tracts, which are major clinical problems. Infections are also linked to the aetiology of diseases such as asthma, emphysema and heart disease. The clinical management of infection is problematic and antibiotic resistance is emerging. Increased understanding of immune processes that are involved in both clearance and immunopathology of chlamydial infection is critical for the development of improved treatment strategies. Here, we show that IL-13 was produced in the lungs of mice rapidly after Chlamydia muridarum (Cmu) infection and promoted susceptibility to infection. Wild-type (WT) mice had increased disease severity, bacterial load and associated inflammation compared to IL-13 deficient (−/−) mice as early as 3 days post infection (p.i.). Intratracheal instillation of IL-13 enhanced bacterial load in IL-13−/− mice. There were no differences in early IFN-g and IL-10 expression between WT and IL-13−/− mice and depletion of CD4+ T cells did not affect infection in IL-13−/− mice. Collectively, these data demonstrate a lack of CD4+ T cell involvement and a novel role for IL-13 in innate responses to infection. We also showed that IL-13 deficiency increased macrophage uptake of Cmu in vitro and in vivo. Moreover, the depletion of IL-13 during infection of lung epithelial cells in vitro decreased the percentage of infected cells and reduced bacterial growth. Our results suggest that enhanced IL-13 responses in the airways, such as that found in asthmatics, may promote susceptibility to chlamydial lung infection. Importantly the role of IL-13 in regulating infection was not limited to the lung as we showed that IL-13 also promoted susceptibility to Cmu genital tract infection. Collectively our findings demonstrate that innate IL-13 release promotes infection that results in enhanced inflammation and have broad implications for the treatment of chlamydial infections and IL-13-associated diseases.


PLOS ONE | 2012

TLR2, but Not TLR4, Is Required for Effective Host Defence against Chlamydia Respiratory Tract Infection in Early Life

Emma L. Beckett; Simon Phipps; Malcolm R. Starkey; Jay C. Horvat; Kenneth W. Beagley; Paul S. Foster; Phillip M. Hansbro

Chlamydia pneumoniae commonly causes respiratory tract infections in children, and epidemiological investigations strongly link infection to the pathogenesis of asthma. The immune system in early life is immature and may not respond appropriately to pathogens. Toll-like receptor (TLR)2 and 4 are regarded as the primary pattern recognition receptors that sense bacteria, however their contribution to innate and adaptive immunity in early life remains poorly defined. We investigated the role of TLR2 and 4 in the induction of immune responses to Chlamydia muridarum respiratory infection, in neonatal wild-type (Wt) or TLR2-deficient (−/−), 4−/− or 2/4−/− BALB/c mice. Wt mice had moderate disease and infection. TLR2−/− mice had more severe disease and more intense and prolonged infection compared to other groups. TLR4−/− mice were asymptomatic. TLR2/4−/− mice had severe early disease and persistent infection, which resolved thereafter consistent with the absence of symptoms in TLR4−/− mice. Wt mice mounted robust innate and adaptive responses with an influx of natural killer (NK) cells, neutrophils, myeloid (mDCs) and plasmacytoid (pDCs) dendritic cells, and activated CD4+ and CD8+ T-cells into the lungs. Wt mice also had effective production of interferon (IFN)γ in the lymph nodes and lung, and proliferation of lymph node T-cells. TLR2−/− mice had more intense and persistent innate (particularly neutrophil) and adaptive cell responses and IL-17 expression in the lung, however IFNγ responses and T-cell proliferation were reduced. TLR2/4−/− mice had reduced innate and adaptive responses. Most importantly, neutrophil phagocytosis was impaired in the absence of TLR2. Thus, TLR2 expression, particularly on neutrophils, is required for effective control of Chlamydia respiratory infection in early life. Loss of control of infection leads to enhanced but ineffective TLR4-mediated inflammatory responses that prolong disease symptoms. This indicates that TLR2 agonists may be beneficial in the treatment of early life Chlamydia infections and associated diseases.

Collaboration


Dive into the Jay C. Horvat's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Kenneth W. Beagley

Queensland University of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge