Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amadeus Gladbach is active.

Publication


Featured researches published by Amadeus Gladbach.


Cell | 2010

Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models

Lars M. Ittner; Yazi D. Ke; Fabien Delerue; Mian Bi; Amadeus Gladbach; Janet van Eersel; Heidrun Wölfing; Billy Chieng; MacDonald J. Christie; Ian A. Napier; Anne Eckert; Matthias Staufenbiel; Edna C. Hardeman; Jürgen Götz

Alzheimers disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


PLOS ONE | 2009

Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease.

Yazi D. Ke; Fabien Delerue; Amadeus Gladbach; Jürgen Götz; Lars M. Ittner

Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimers disease (AD) as it is involved in the metabolism of β-amyloid (Aβ) and tau, two proteins that form Aβ plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology.


Science | 2016

Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice

Arne Ittner; Sook Wern Chua; Josefine Bertz; Alexander Volkerling; Julia van der Hoven; Amadeus Gladbach; Magdalena Przybyla; Mian Bi; Annika van Hummel; Claire H. Stevens; Stefania Ippati; Lisa S. Suh; Alexander Macmillan; Greg T. Sutherland; Jillian J. Kril; Ana P. G. Silva; Joel P. Mackay; Anne Poljak; Fabien Delerue; Yazi D. Ke; Lars M. Ittner

Tau phosphorylation—not all bad Alzheimers disease presents with amyloid-β (Aβ) plaques and tau tangles. The prevailing idea in the field is that Aβ induces phosphorylation of tau, which in turn mediates neuronal dysfunction. Working in Alzheimers disease mouse models, Ittner et al. found evidence for a protective role of tau in early Alzheimers disease. This protection involves specific tau phosphorylation at threonine 205 at the postsynapse. A protective role of phosphorylated tau in disease challenges the dogma that tau phosphorylation only mediates toxic processes. Science, this issue p. 904 Phosphorylation of tau at a specific site mitigates, rather than enhances, symptoms in a mouse model of Alzheimer’s disease. Amyloid-β (Aβ) toxicity in Alzheimer’s disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.


Biochimica et Biophysica Acta | 2010

Animal models reveal role for tau phosphorylation in human disease.

Jürgen Götz; Amadeus Gladbach; Luis Pennanen; Janet van Eersel; Andreas Schild; Della C. David; Lars M. Ittner

Many proteins that are implicated in human disease are posttranslationally modified. This includes the microtubule-associated protein tau that is deposited in a hyperphosphorylated form in brains of Alzheimers disease patients. The focus of this review article is on the physiological and pathological phosphorylation of tau; the relevance of aberrant phosphorylation for disease; the role of kinases and phosphatases in this process; its modeling in transgenic mice, flies, and worms; and implications of phosphorylation for therapeutic intervention.


PLOS ONE | 2011

Cytoplasmic Accumulation and Aggregation of TDP-43 upon Proteasome Inhibition in Cultured Neurons

Janet van Eersel; Yazi D. Ke; Amadeus Gladbach; Mian Bi; Jürgen Götz; Jillian J. Kril; Lars M. Ittner

Amyotrophic lateral sclerosis (ALS) and frontotemporal lobar degeneration (FTLD) are characterized by intraneuronal deposition of the nuclear TAR DNA-binding protein 43 (TDP-43) caused by unknown mechanisms. Here, we studied TDP-43 in primary neurons under different stress conditions and found that only proteasome inhibition by MG-132 or lactacystin could induce significant cytoplasmic accumulation of TDP-43, a histopathological hallmark in disease. This cytoplasmic accumulation was accompanied by phosphorylation, ubiquitination and aggregation of TDP-43, recapitulating major features of disease. Proteasome inhibition produced similar effects in both hippocampal and cortical neurons, as well as in immortalized motor neurons. To determine the contribution of TDP-43 to cell death, we reduced TDP-43 expression using small interfering RNA (siRNA), and found that reduced levels of TDP-43 dose-dependently rendered neurons more vulnerable to MG-132. Taken together, our data suggests a role for the proteasome in subcellular localization of TDP-43, and possibly in disease.


Iubmb Life | 2011

Brief update on different roles of tau in neurodegeneration

Arne Ittner; Yazi D. Ke; Janet van Eersel; Amadeus Gladbach; Jürgen Götz; Lars M. Ittner

Both Alzheimers disease (AD) and almost every second case of frontotemporal lobar degeneration (FTLD) are characterized by the deposition of hyperphosphorylated forms of the microtubule‐associated protein tau in neurons and/or glia. This unifying pathology led to coining the umbrella term “tauopathies” for these conditions. While the deposition of tau ultimately results in the formation of typical histopathological lesions, such as the neurofibrillary tangles (NFTs) in AD, it is now well accepted that tau interferes with normal functions in neurons already before its deposition. Together with the identification of pathogenic mutations in the tau‐encoding gene MAPT in FTLD and evidence from a rising number of in vivo animal models a central role of tau in neurodegeneration has emerged. Here, we review the role of pathological tau in axonal transport, mitochondrial respiration, and in mediating amyloid‐β toxicity in AD. Furthermore, we review recent findings regarding the spreading of tau pathology throughout the brain as disease progresses.


PLOS ONE | 2016

A Comparative Study of Variables Influencing Ischemic Injury in the Longa and Koizumi Methods of Intraluminal Filament Middle Cerebral Artery Occlusion in Mice

Gary P. Morris; Amanda L. Wright; Richard P. Tan; Amadeus Gladbach; Lars M. Ittner; Bryce Vissel

The intraluminal filament model of middle cerebral artery occlusion (MCAO) in mice and rats has been plagued by inconsistency, owing in part to the multitude of variables requiring control. In this study we investigated the impact of several major variables on survival rate, lesion volume, neurological scores, cerebral blood flow (CBF) and body weight including filament width, time after reperfusion, occlusion time and the choice of surgical method. Using the Koizumi method, we found ischemic injury can be detected as early as 30 min after reperfusion, to a degree that is not statistically different from 24 h post-perfusion, using 2,3,5-Triphenyltetrazolium chloride (TTC) staining. We also found a distinct increase in total lesion volume with increasing occlusion time, with 30–45 min a critical time for the development of large, reproducible lesions. Furthermore, although we found no significant difference in total lesion volume generated by the Koizumi and Longa methods of MCAO, nor were survival rates appreciably different between the two at 4 h after reperfusion, the Longa method produces significantly greater reperfusion. Finally, we found no statistical evidence to support the exclusion of data from animals experiencing a CBF reduction of <70% in the MCA territory following MCAO, using laser-Doppler flowmetry. Instead we suggest the main usefulness of laser-Doppler flowmetry is for guiding filament placement and the identification of subarachnoid haemorrhages and premature reperfusion. In summary, this study provides detailed evaluation of the Koizumi method of intraluminal filament MCAO in mice and a direct comparison to the Longa method.


Acta neuropathologica communications | 2014

p38 MAP kinase-mediated NMDA receptor-dependent suppression of hippocampal hypersynchronicity in a mouse model of Alzheimer’s disease

Arne Ittner; Amadeus Gladbach; Josefine Bertz; Lisa S. Suh; Lars M. Ittner

Hypersynchronicity of neuronal brain circuits is a feature of Alzheimer’s disease (AD). Mouse models of AD expressing mutated forms of the amyloid-β precursor protein (APP), a central protein involved in AD pathology, show cortical hypersynchronicity. We studied hippocampal circuitry in APP23 transgenic mice using telemetric electroencephalography (EEG), at the age of onset of memory deficits. APP23 mice display spontaneous hypersynchronicity in the hippocampus including epileptiform spike trains. Furthermore, spectral contributions of hippocampal theta and gamma oscillations are compromised in APP23 mice, compared to non-transgenic controls. Using cross-frequency coupling analysis, we show that hippocampal gamma amplitude modulation by theta phase is markedly impaired in APP23 mice. Hippocampal hypersynchronicity and waveforms are differentially modulated by injection of riluzole and the non-competitive N-methyl-D-aspartate (NMDA) receptor inhibitor MK801, suggesting specific involvement of voltage-gated sodium channels and NMDA receptors in hypersynchronicity thresholds in APP23 mice. Furthermore, APP23 mice show marked activation of p38 mitogen-activated protein (MAP) kinase in hippocampus, and injection of MK801 but not riluzole reduces activation of p38 in the hippocampus. A p38 inhibitor induces hypersynchronicity in APP23 mice to a similar extent as MK801, thus supporting suppression of hypersynchronicity involves NMDA receptors-mediated p38 activity. In summary, we characterize components of hippocampal hypersynchronicity, waveform patterns and cross-frequency coupling in the APP23 mouse model by pharmacological modulation, furthering the understanding of epileptiform brain activity in AD.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

Vashe Chandrakanthan; Avani Yeola; Jair C. Kwan; Rema Oliver; Qiao Qiao; Young Chan Kang; Peter Zarzour; Dominik Beck; Lies Boelen; Ashwin Unnikrishnan; Jeanette E. Villanueva; Andrea C. Nunez; Kathy Knezevic; Cintia Palu; Rabab Nasrallah; Michael Carnell; Alex Macmillan; Renee Whan; Yan Yu; Philip Hardy; Shane T. Grey; Amadeus Gladbach; Fabien Delerue; Lars M. Ittner; Ralph J. Mobbs; Carl R. Walkley; Louise E. Purton; Robyn L. Ward; Jason Wong; Luke B. Hesson

Significance In this report we describe the generation of tissue-regenerative multipotent stem cells (iMS cells) by treating mature bone and fat cells transiently with a growth factor [platelet-derived growth factor–AB (PDGF-AB)] and 5-Azacytidine, a demethylating compound that is widely used in clinical practice. Unlike primary mesenchymal stem cells, which are used with little objective evidence in clinical practice to promote tissue repair, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner without forming tumors. This method can be applied to both mouse and human somatic cells to generate multipotent stem cells and has the potential to transform current approaches in regenerative medicine. Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Neuropathology and Applied Neurobiology | 2015

Early-onset axonal pathology in a novel P301S-Tau transgenic mouse model of frontotemporal lobar degeneration

Janet van Eersel; Claire H. Stevens; Magdalena Przybyla; Amadeus Gladbach; Kristie Stefanoska; Chesed Kai-Xin Chan; Wei-Yi Ong; John R. Hodges; Greg T. Sutherland; Jillian J. Kril; Dorothee Abramowski; Matthias Staufenbiel; Glenda M. Halliday; Lars M. Ittner

Tau becomes hyperphosphorylated in Alzheimers disease (AD) and frontotemporal lobar degeneration (FTLD‐tau), resulting in functional deficits of neurones, neurofibrillary tangle (NFT) formation and eventually dementia. Expression of mutant human tau in the brains of transgenic mice has produced different lines that recapitulate various aspects of FTLD‐tau and AD. In this study, we characterized the novel P301S mutant tau transgenic mouse line, TAU58/2.

Collaboration


Dive into the Amadeus Gladbach's collaboration.

Top Co-Authors

Avatar

Lars M. Ittner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yazi D. Ke

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Götz

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Mian Bi

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Fabien Delerue

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Arne Ittner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Claire H. Stevens

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Annika van Hummel

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge