Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Fabien Delerue is active.

Publication


Featured researches published by Fabien Delerue.


Cell | 2010

Dendritic Function of Tau Mediates Amyloid-β Toxicity in Alzheimer's Disease Mouse Models

Lars M. Ittner; Yazi D. Ke; Fabien Delerue; Mian Bi; Amadeus Gladbach; Janet van Eersel; Heidrun Wölfing; Billy Chieng; MacDonald J. Christie; Ian A. Napier; Anne Eckert; Matthias Staufenbiel; Edna C. Hardeman; Jürgen Götz

Alzheimers disease (AD) is characterized by amyloid-beta (Abeta) and tau deposition in brain. It has emerged that Abeta toxicity is tau dependent, although mechanistically this link remains unclear. Here, we show that tau, known as axonal protein, has a dendritic function in postsynaptic targeting of the Src kinase Fyn, a substrate of which is the NMDA receptor (NR). Missorting of tau in transgenic mice expressing truncated tau (Deltatau) and absence of tau in tau(-/-) mice both disrupt postsynaptic targeting of Fyn. This uncouples NR-mediated excitotoxicity and hence mitigates Abeta toxicity. Deltatau expression and tau deficiency prevent memory deficits and improve survival in Abeta-forming APP23 mice, a model of AD. These deficits are also fully rescued with a peptide that uncouples the Fyn-mediated interaction of NR and PSD-95 in vivo. Our findings suggest that this dendritic role of tau confers Abeta toxicity at the postsynapse with direct implications for pathogenesis and treatment of AD.


Proceedings of the National Academy of Sciences of the United States of America | 2010

Sodium selenate mitigates tau pathology, neurodegeneration, and functional deficits in Alzheimer's disease models.

Janet van Eersel; Yazi D. Ke; Xin Liu; Fabien Delerue; Jillian J. Kril; Jürgen Götz; Lars M. Ittner

Alzheimers disease (AD) brains are characterized by amyloid-β-containing plaques and hyperphosphorylated tau-containing neurofibrillary tangles (NFTs); however, in frontotemporal dementia, the tau pathology manifests in the absence of overt amyloid-β plaques. Therapeutic strategies so far have primarily been targeting amyloid-β, although those targeting tau are only slowly beginning to emerge. Here, we identify sodium selenate as a compound that reduces tau phosphorylation both in vitro and in vivo. Importantly, chronic oral treatment of two independent tau transgenic mouse strains with NFT pathology, P301L mutant pR5 and K369I mutant K3 mice, reduces tau hyperphosphorylation and completely abrogates NFT formation. Furthermore, treatment improves contextual memory and motor performance, and prevents neurodegeneration. As hyperphosphorylation of tau precedes NFT formation, the effect of selenate on tau phosphorylation was assessed in more detail, a process regulated by both kinases and phosphatases. A major phosphatase implicated in tau dephosphorylation is the serine/threonine-specific protein phosphatase 2A (PP2A) that is reduced in both levels and activity in the AD brain. We found that selenate stabilizes PP2A-tau complexes. Moreover, there was an absence of therapeutic effects in sodium selenate-treated tau transgenic mice that coexpress a dominant-negative mutant form of PP2A, suggesting a mediating role for PP2A. Taken together, sodium selenate mitigates tau pathology in several AD models, making it a promising lead compound for tau-targeted treatments of AD and related dementias.


PLOS ONE | 2009

Experimental diabetes mellitus exacerbates tau pathology in a transgenic mouse model of Alzheimer's disease.

Yazi D. Ke; Fabien Delerue; Amadeus Gladbach; Jürgen Götz; Lars M. Ittner

Diabetes mellitus (DM) is characterized by hyperglycemia caused by a lack of insulin, insulin resistance, or both. There is increasing evidence that insulin also plays a role in Alzheimers disease (AD) as it is involved in the metabolism of β-amyloid (Aβ) and tau, two proteins that form Aβ plaques and neurofibrillary tangles (NFTs), respectively, the hallmark lesions in AD. Here, we examined the effects of experimental DM on a pre-existing tau pathology in the pR5 transgenic mouse strain that is characterized by NFTs. pR5 mice express P301L mutant human tau that is associated with dementia. Experimental DM was induced by administration of streptozotocin (STZ), which causes insulin deficiency. We determined phosphorylation of tau, using immunohistochemistry and Western blotting. Solubility of tau was determined upon extraction with sarkosyl and formic acid, and Gallyas silver staining was employed to reveal NFTs. Insulin depletion by STZ administration in six months-old non-transgenic mice causes increased tau phosphorylation, without its deposition or NFT formation. In contrast, in pR5 mice this results in massive deposition of hyperphosphorylated, insoluble tau. Furthermore, they develop a pronounced tau-histopathology, including NFTs at this early age, while the pathology in sham-treated pR5 mice is moderate. Whereas experimental DM did not result in deposition of hyperphosphorylated tau in non-transgenic mice, a predisposition to develop a tau pathology in young pR5 mice was both sufficient and necessary to exacerbate tau deposition and NFT formation. Hence, DM can accelerate onset and increase severity of disease in individuals with a predisposition to developing tau pathology.


Science | 2016

Site-specific phosphorylation of tau inhibits amyloid-β toxicity in Alzheimer’s mice

Arne Ittner; Sook Wern Chua; Josefine Bertz; Alexander Volkerling; Julia van der Hoven; Amadeus Gladbach; Magdalena Przybyla; Mian Bi; Annika van Hummel; Claire H. Stevens; Stefania Ippati; Lisa S. Suh; Alexander Macmillan; Greg T. Sutherland; Jillian J. Kril; Ana P. G. Silva; Joel P. Mackay; Anne Poljak; Fabien Delerue; Yazi D. Ke; Lars M. Ittner

Tau phosphorylation—not all bad Alzheimers disease presents with amyloid-β (Aβ) plaques and tau tangles. The prevailing idea in the field is that Aβ induces phosphorylation of tau, which in turn mediates neuronal dysfunction. Working in Alzheimers disease mouse models, Ittner et al. found evidence for a protective role of tau in early Alzheimers disease. This protection involves specific tau phosphorylation at threonine 205 at the postsynapse. A protective role of phosphorylated tau in disease challenges the dogma that tau phosphorylation only mediates toxic processes. Science, this issue p. 904 Phosphorylation of tau at a specific site mitigates, rather than enhances, symptoms in a mouse model of Alzheimer’s disease. Amyloid-β (Aβ) toxicity in Alzheimer’s disease (AD) is considered to be mediated by phosphorylated tau protein. In contrast, we found that, at least in early disease, site-specific phosphorylation of tau inhibited Aβ toxicity. This specific tau phosphorylation was mediated by the neuronal p38 mitogen-activated protein kinase p38γ and interfered with postsynaptic excitotoxic signaling complexes engaged by Aβ. Accordingly, depletion of p38γ exacerbated neuronal circuit aberrations, cognitive deficits, and premature lethality in a mouse model of AD, whereas increasing the activity of p38γ abolished these deficits. Furthermore, mimicking site-specific tau phosphorylation alleviated Aβ-induced neuronal death and offered protection from excitotoxicity. Our work provides insights into postsynaptic processes in AD pathogenesis and challenges a purely pathogenic role of tau phosphorylation in neuronal toxicity.


Journal of Neuroendocrinology | 2011

Dimorphic effects of leptin on the circadian and hypocretinergic systems of mice.

J. Mendoza; C. Lopez-Lopez; F. G. Revel; K. Jeanneau; Fabien Delerue; Eric Prinssen; Etienne Challet; Jean-Luc Moreau; Christophe Grundschober

The hormone leptin controls food intake and body weight through its receptor in the hypothalamus, and may modulate physiological functions such as reproduction, sleep or circadian timing. In the present study, the effects of leptin on the resetting of the circadian clock, the hypothalamic suprachiasmatic nucleus (SCN) and on the activity of the hypocretinergic system were examined in vivo, with comparative analysis between male and female mice. A single leptin injection (5 mg/kg) at both the onset and offset of the activity period did not alter locomotion of mice housed under a 12 : 12 h light/dark cycle and did not shift the circadian behavioral rhythm of mice housed in constant darkness. By contrast, leptin potentiated the phase‐shifting effect of a 30‐min light‐pulse on behavioural rhythms during the late subjective night, although only in females. This was accompanied by a higher induction of the clock genes Per1 and Per2 in the SCN. A 2‐week chronic exposure to a physiological dose of leptin (100 μg/kg per day) decreased locomotor activity, expression of hypocretin receptor 1 and 2, as well as the number of hypocretin‐immunoreactive neurones only in female mice, whereas the number of c‐fos‐positive hypocretinergic neurones was reduced in both genders. These results highlight a dimorphic effect of leptin on the hypocretinergic system and on the response of the circadian clock to light. Leptin may thus modulate the sleep/wake cycle and circadian system beside its well‐established action on food intake and regulation of body weight.


Behavioural Brain Research | 2002

Differential roles for nicotinic and muscarinic cholinergic receptors in sustained visuo-spatial attention? A study using a 5-arm maze protocol in mice

Laurent Leblond; Christine Beaufort; Fabien Delerue; Thomas P. Durkin

A 5-arm maze was used to measure sustained visuo-spatial attention in C57Bl/6 mice and test the hypothesis of differential functional roles for central nicotinic and muscarinic receptors in mediating task performance. Mice were first trained to acquire the basic visual discrimination task in which, on each trial, one randomly chosen arm among the five open arms was baited and remained lit until an arm-choice was made. Mice were then submitted to attentional testing in which trials using light signals of 2, 1 or 0.5 s were intermixed to evaluate the decrement in correct responses as a function of the decrease in light signal duration and thus, to construct a reference curve for the attentional performance of C57Bl/6 mice. Mice were then divided into four groups and received, in rotation, over four pharmacological sessions according to a Latin-square design, i.p. injections of either mecamylamine (4.0 mg/kg), scopolamine (0.8 mg/kg), the combination of mecamylamine and scopolamine or saline, 20 min before re-testing. Injection of cholinergic antagonists produced decreases in percentage of correct responses, which were systematically associated with significant increases in choice latencies. Mecamylamine produced slight disruption, whereas scopolamine and the combined treatment both produced severe disruption. In conclusion, whereas both nicotinic and muscarinic cholinergic antagonists disrupt performance in the attentional task, the increase in response latencies entails that correct responding becomes more dependent on the working memory processes and thus compromises conclusions as to a selective disruption of attention.


Proceedings of the National Academy of Sciences of the United States of America | 2016

PDGF-AB and 5-Azacytidine induce conversion of somatic cells into tissue-regenerative multipotent stem cells

Vashe Chandrakanthan; Avani Yeola; Jair C. Kwan; Rema Oliver; Qiao Qiao; Young Chan Kang; Peter Zarzour; Dominik Beck; Lies Boelen; Ashwin Unnikrishnan; Jeanette E. Villanueva; Andrea C. Nunez; Kathy Knezevic; Cintia Palu; Rabab Nasrallah; Michael Carnell; Alex Macmillan; Renee Whan; Yan Yu; Philip Hardy; Shane T. Grey; Amadeus Gladbach; Fabien Delerue; Lars M. Ittner; Ralph J. Mobbs; Carl R. Walkley; Louise E. Purton; Robyn L. Ward; Jason Wong; Luke B. Hesson

Significance In this report we describe the generation of tissue-regenerative multipotent stem cells (iMS cells) by treating mature bone and fat cells transiently with a growth factor [platelet-derived growth factor–AB (PDGF-AB)] and 5-Azacytidine, a demethylating compound that is widely used in clinical practice. Unlike primary mesenchymal stem cells, which are used with little objective evidence in clinical practice to promote tissue repair, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner without forming tumors. This method can be applied to both mouse and human somatic cells to generate multipotent stem cells and has the potential to transform current approaches in regenerative medicine. Current approaches in tissue engineering are geared toward generating tissue-specific stem cells. Given the complexity and heterogeneity of tissues, this approach has its limitations. An alternate approach is to induce terminally differentiated cells to dedifferentiate into multipotent proliferative cells with the capacity to regenerate all components of a damaged tissue, a phenomenon used by salamanders to regenerate limbs. 5-Azacytidine (AZA) is a nucleoside analog that is used to treat preleukemic and leukemic blood disorders. AZA is also known to induce cell plasticity. We hypothesized that AZA-induced cell plasticity occurs via a transient multipotent cell state and that concomitant exposure to a receptive growth factor might result in the expansion of a plastic and proliferative population of cells. To this end, we treated lineage-committed cells with AZA and screened a number of different growth factors with known activity in mesenchyme-derived tissues. Here, we report that transient treatment with AZA in combination with platelet-derived growth factor–AB converts primary somatic cells into tissue-regenerative multipotent stem (iMS) cells. iMS cells possess a distinct transcriptome, are immunosuppressive, and demonstrate long-term self-renewal, serial clonogenicity, and multigerm layer differentiation potential. Importantly, unlike mesenchymal stem cells, iMS cells contribute directly to in vivo tissue regeneration in a context-dependent manner and, unlike embryonic or pluripotent stem cells, do not form teratomas. Taken together, this vector-free method of generating iMS cells from primary terminally differentiated cells has significant scope for application in tissue regeneration.


Transgenic Research | 2014

Inducible, tightly regulated and non-leaky neuronal gene expression in mice

Fabien Delerue; Michael A. White; Lars M. Ittner

The Tetracycline (Tet)-controlled inducible system is the most widely used reversible system for transgene expression in mice with over 500 lines created to date. Although this system has been optimized over the years, it still has limitations such as residual transgene expression when turned off, referred to as leakiness. Here, we present a series of new Tet-OFF transgenic mice based on the second generation tetracycline-responsive transactivator system. The tTA-Advanced (tTA2S) is expressed under control of the neuron-specific Thy1.2 promoter (Thy-OFF), to regulate expression in the mouse brain. In addition, we generated a lacZ reporter line, utilizing the Ptight Tet-responsive promoter (Ptight–lacZ), to test our system. Two Thy-OFF transgenic lines displaying two distinct patterns of expression were selected. Oral doxycycline treatment of Thy-OFF/Ptight–lacZ mice demonstrated tight transgene regulation with no leak expression. These new Thy-OFF mice are valuable for studies in a broad range of neurodegenerative diseases such as Alzheimer’s disease and related forms of dementia, where control of transgene expression is critical to understanding mechanisms underlying the disease. Furthermore, Ptight–lacZ reporter mice may be widely applicable.


Journal of Clinical Investigation | 2017

Mutations in tropomyosin 4 underlie a rare form of human macrothrombocytopenia

Irina Pleines; Joanne Woods; Stephane Chappaz; Verity Kew; Nicola S. Foad; José Ballester-Beltrán; Katja Aurbach; Chiara Lincetto; Rachael M. Lane; Galina Schevzov; Warren S. Alexander; Douglas J. Hilton; William Astle; Kate Downes; Paquita Nurden; Sarah K. Westbury; Andrew D Mumford; Samya Obaji; Peter William Collins; Nihr BioResource; Fabien Delerue; Lars M. Ittner; Nicole S. Bryce; Mira Holliday; Christine A. Lucas; Edna C. Hardeman; Willem H. Ouwehand; Peter Gunning; Ernest Turro; Marloes R. Tijssen

Platelets are anuclear cells that are essential for blood clotting. They are produced by large polyploid precursor cells called megakaryocytes. Previous genome-wide association studies in nearly 70,000 individuals indicated that single nucleotide variants (SNVs) in the gene encoding the actin cytoskeletal regulator tropomyosin 4 (TPM4) exert an effect on the count and volume of platelets. Platelet number and volume are independent risk factors for heart attack and stroke. Here, we have identified 2 unrelated families in the BRIDGE Bleeding and Platelet Disorders (BPD) collection who carry a TPM4 variant that causes truncation of the TPM4 protein and segregates with macrothrombocytopenia, a disorder characterized by low platelet count. N-Ethyl-N-nitrosourea–induced (ENU-induced) missense mutations in Tpm4 or targeted inactivation of the Tpm4 locus led to gene dosage–dependent macrothrombocytopenia in mice. All other blood cell counts in Tpm4-deficient mice were normal. Insufficient TPM4 expression in human and mouse megakaryocytes resulted in a defect in the terminal stages of platelet production and had a mild effect on platelet function. Together, our findings demonstrate a nonredundant role for TPM4 in platelet biogenesis in humans and mice and reveal that truncating variants in TPM4 cause a previously undescribed dominant Mendelian platelet disorder.


Aging Cell | 2017

Accelerated aging exacerbates a pre‐existing pathology in a tau transgenic mouse model

Liviu-Gabriel Bodea; Harrison Evans; Ann Van der Jeugd; Lars M. Ittner; Fabien Delerue; Jillian J. Kril; Glenda M. Halliday; John R. Hodges; Mathew C. Kiernan; Jürgen Götz

Age is a critical factor in the prevalence of tauopathies, including Alzheimers disease. To observe how an aging phenotype interacts with and affects the pathological intracellular accumulation of hyperphosphorylated tau, the tauopathy mouse model pR5 (expressing P301L mutant human tau) was back‐crossed more than ten times onto a senescence‐accelerated SAMP8 background to establish the new strain, SApT. Unlike SAMP8 mice, pR5 mice are characterized by a robust tau pathology particularly in the amygdala and hippocampus. Analysis of age‐matched SApT mice revealed that pathological tau phosphorylation was increased in these brain regions compared to those in the parental pR5 strain. Moreover, as revealed by immunohistochemistry, phosphorylation of critical tau phospho‐epitopes (P‐Ser202/P‐Ser205 and P‐Ser235) was significantly increased in the amygdala of SApT mice in an age‐dependent manner, suggesting an age‐associated effect of tau phosphorylation. Anxiety tests revealed that the older cohort of SApT mice (10 months vs. 8 months) exhibited a behavioural pattern similar to that observed for age‐matched tau transgenic pR5 mice and not the SAMP8 parental mice. Learning and memory, however, appeared to be governed by the accelerated aging background of the SAMP8 strain, as at both ages investigated, SAMP8 and SApT mice showed a decreased learning capacity compared to pR5 mice. We therefore conclude that accelerated aging exacerbates pathological tau phosphorylation, leading to changes in normal behaviour. These findings further suggest that SApT mice may be a useful novel model in which to study the role of a complex geriatric phenotype in tauopathy.

Collaboration


Dive into the Fabien Delerue's collaboration.

Top Co-Authors

Avatar

Lars M. Ittner

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Yazi D. Ke

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jürgen Götz

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Andre Bongers

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mian Bi

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Alexander Volkerling

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar

Annika van Hummel

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge