Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amagana Dolo is active.

Publication


Featured researches published by Amagana Dolo.


Nature Genetics | 2009

Genome-wide and fine-resolution association analysis of malaria in West Africa.

Muminatou Jallow; Yik-Ying Teo; Kerrin S. Small; Kirk A. Rockett; Panos Deloukas; Taane G. Clark; Katja Kivinen; Kalifa Bojang; David J. Conway; Margaret Pinder; Giorgio Sirugo; Fatou Sisay-Joof; Stanley Usen; Sarah Auburn; Suzannah Bumpstead; Susana Campino; Alison J. Coffey; Andrew Dunham; Andrew E. Fry; Angela Green; Rhian Gwilliam; Sarah Hunt; Michael Inouye; Anna Jeffreys; Alieu Mendy; Aarno Palotie; Simon Potter; Jiannis Ragoussis; Jane Rogers; Kate Rowlands

We report a genome-wide association (GWA) study of severe malaria in The Gambia. The initial GWA scan included 2,500 children genotyped on the Affymetrix 500K GeneChip, and a replication study included 3,400 children. We used this to examine the performance of GWA methods in Africa. We found considerable population stratification, and also that signals of association at known malaria resistance loci were greatly attenuated owing to weak linkage disequilibrium (LD). To investigate possible solutions to the problem of low LD, we focused on the HbS locus, sequencing this region of the genome in 62 Gambian individuals and then using these data to conduct multipoint imputation in the GWA samples. This increased the signal of association, from P = 4 × 10−7 to P = 4 × 10−14, with the peak of the signal located precisely at the HbS causal variant. Our findings provide proof of principle that fine-resolution multipoint imputation, based on population-specific sequencing data, can substantially boost authentic GWA signals and enable fine mapping of causal variants in African populations.


Proceedings of the National Academy of Sciences of the United States of America | 2007

TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans.

Bart Ferwerda; Matthew McCall; Santos Alonso; Evangelos J. Giamarellos-Bourboulis; Maria Mouktaroudi; Neskuts Izagirre; Din Syafruddin; Gibson Kibiki; Tudor Cristea; Anneke Hijmans; Lutz Hamann; Shoshana Israel; Gehad ElGhazali; Marita Troye-Blomberg; Oliver Kumpf; Boubacar Maiga; Amagana Dolo; Ogobara K. Doumbo; Cornelus C. Hermsen; Anton F. H. Stalenhoef; Reinout van Crevel; Han G. Brunner; Djin-Ye Oh; Ralf R. Schumann; Concepción de la Rúa; Robert W. Sauerwein; Bart Jan Kullberg; Andre van der Ven; Jos W. M. van der Meer; Mihai G. Netea

Infectious diseases exert a constant evolutionary pressure on the genetic makeup of our innate immune system. Polymorphisms in Toll-like receptor 4 (TLR4) have been related to susceptibility to Gram-negative infections and septic shock. Here we show that two polymorphisms of TLR4, Asp299Gly and Thr399Ile, have unique distributions in populations from Africa, Asia, and Europe. Genetic and functional studies are compatible with a model in which the nonsynonymous polymorphism Asp299Gly has evolved as a protective allele against malaria, explaining its high prevalence in subSaharan Africa. However, the same allele could have been disadvantageous after migration of modern humans into Eurasia, putatively because of increased susceptibility to severe bacterial infections. In contrast, the Asp299Gly allele, when present in cosegregation with Thr399Ile to form the Asp299Gly/Thr399Ile haplotype, shows selective neutrality. Polymorphisms in TLR4 exemplify how the interaction between our innate immune system and the infectious pressures in particular environments may have shaped the genetic variations and function of our immune system during the out-of-Africa migration of modern humans.


The New England Journal of Medicine | 2011

A Field Trial to Assess a Blood-Stage Malaria Vaccine

Mahamadou A. Thera; Ogobara K. Doumbo; Drissa Coulibaly; Matthew B. Laurens; Amed Ouattara; Abdoulaye K. Kone; Ando Guindo; Karim Traore; Idrissa Traore; Bourema Kouriba; Dapa A. Diallo; Issa Diarra; Modibo Daou; Amagana Dolo; Youssouf Tolo; Mahamadou S Sissoko; Amadou Niangaly; Mady Sissoko; Shannon Takala-Harrison; Kirsten E. Lyke; Yukun Wu; William C. Blackwelder; Olivier Godeaux; Johan Vekemans; Marie-Claude Dubois; W. Ripley Ballou; Joe Cohen; Darby Thompson; Tina Dube; Lorraine Soisson

BACKGROUND Blood-stage malaria vaccines are intended to prevent clinical disease. The malaria vaccine FMP2.1/AS02(A), a recombinant protein based on apical membrane antigen 1 (AMA1) from the 3D7 strain of Plasmodium falciparum, has previously been shown to have immunogenicity and acceptable safety in Malian adults and children. METHODS In a double-blind, randomized trial, we immunized 400 Malian children with either the malaria vaccine or a control (rabies) vaccine and followed them for 6 months. The primary end point was clinical malaria, defined as fever and at least 2500 parasites per cubic millimeter of blood. A secondary end point was clinical malaria caused by parasites with the AMA1 DNA sequence found in the vaccine strain. RESULTS The cumulative incidence of the primary end point was 48.4% in the malaria-vaccine group and 54.4% in the control group; efficacy against the primary end point was 17.4% (hazard ratio for the primary end point, 0.83; 95% confidence interval [CI], 0.63 to 1.09; P=0.18). Efficacy against the first and subsequent episodes of clinical malaria, as defined on the basis of various parasite-density thresholds, was approximately 20%. Efficacy against clinical malaria caused by parasites with AMA1 corresponding to that of the vaccine strain was 64.3% (hazard ratio, 0.36; 95% CI, 0.08 to 0.86; P=0.03). Local reactions and fever after vaccination were more frequent with the malaria vaccine. CONCLUSIONS On the basis of the primary end point, the malaria vaccine did not provide significant protection against clinical malaria, but on the basis of secondary results, it may have strain-specific efficacy. If this finding is confirmed, AMA1 might be useful in a multicomponent malaria vaccine. (Funded by the National Institute of Allergy and Infectious Diseases and others; ClinicalTrials.gov number, NCT00460525.).


American Journal of Tropical Medicine and Hygiene | 2012

False-Negative Rapid Diagnostic Tests for Malaria and Deletion of the Histidine-Rich Repeat Region of the hrp2 Gene

Ousmane Koita; Ogobara K. Doumbo; Amed Ouattara; Lalla K. Tall; Aoua Konaré; Mahamadou Diakite; Mouctar Diallo; Issaka Sagara; Godfred L. Masinde; Safiatou Doumbo; Amagana Dolo; Anatole Tounkara; Issa Traoré; Donald J. Krogstad

We identified 480 persons with positive thick smears for asexual Plasmodium falciparum parasites, of whom 454 had positive rapid diagnostic tests (RDTs) for the histidine-rich protein 2 (HRP2) product of the hrp2 gene and 26 had negative tests. Polymerase chain reaction (PCR) amplification for the histidine-rich repeat region of that gene was negative in one-half (10/22) of false-negative specimens available, consistent with spontaneous deletion. False-negative RDTs were found only in persons with asymptomatic infections, and multiplicities of infection (MOIs) were lower in persons with false-negative RDTs (both P < 0.001). These results show that parasites that fail to produce HRP2 can cause patent bloodstream infections and false-negative RDT results. The importance of these observations is likely to increase as malaria control improves, because lower MOIs are associated with false-negative RDTs and false-negative RDTs are more frequent in persons with asymptomatic infections. These findings suggest that the use of HRP2-based RDTs should be reconsidered.


Vaccine | 2009

A Randomized Controlled Phase 2 Trial of the Blood Stage AMA1-C1/Alhydrogel Malaria Vaccine in Children in Mali

Issaka Sagara; Alassane Dicko; Ruth D. Ellis; Michael P. Fay; Sory I. Diawara; Mahamadoun H. Assadou; Mahamadou S Sissoko; Mamady Kone; Abdoulbaki I Diallo; Renion Saye; Merepen A. Guindo; Ousmane Kante; Mohamed B. Niambele; Kazutoyo Miura; Gregory Mullen; Mark Pierce; Laura B. Martin; Amagana Dolo; Dapa A. Diallo; Ogobara K. Doumbo; Louis H. Miller; Allan Saul

A double blind, randomized, controlled Phase 2 clinical trial was conducted to assess the safety, immunogenicity, and biologic impact of the vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1), adjuvanted with Alhydrogel. Participants were healthy children 2-3 years old living in or near the village of Bancoumana, Mali. A total of 300 children received either the study vaccine or the comparator. No impact of vaccination was seen on the primary endpoint, the frequency of parasitemia measured as episodes >3000/microL/day at risk. There was a negative impact of vaccination on the hemoglobin level during clinical malaria, and mean incidence of hemoglobin <8.5 g/dL, in the direction of lower hemoglobin in the children who received AMA1-C1, although these differences were not significant after correction for multiple tests. These differences were not seen in the second year of transmission.


PLOS ONE | 2008

Safety and immunogenicity of an AMA1 malaria vaccine in Malian children: results of a phase 1 randomized controlled trial.

Mahamadou A. Thera; Ogobara K. Doumbo; Drissa Coulibaly; Dapa A. Diallo; Abdoulaye K. Kone; Ando Guindo; Karim Traore; Alassane Dicko; Issaka Sagara; Mahamadou S Sissoko; Mounirou Baby; Mady Sissoko; Issa Diarra; Amadou Niangaly; Amagana Dolo; Modibo Daou; Sory I. Diawara; D. Gray Heppner; V. Ann Stewart; Evelina Angov; Elke S. Bergmann-Leitner; David E. Lanar; Sheetij Dutta; Lorraine Soisson; Carter Diggs; Amanda Leach; Alex Owusu; Marie-Claude Dubois; Joe Cohen; Jason N. Nixon

Background The objective was to evaluate the safety, reactogenicity and immunogenicity of the AMA-1-based blood-stage malaria vaccine FMP2.1/AS02A in adults exposed to seasonal malaria. Methodology/Principal Findings A phase 1 double blind randomized controlled dose escalation trial was conducted in Bandiagara, Mali, West Africa, a rural town with intense seasonal transmission of Plasmodium falciparum malaria. The malaria vaccine FMP2.1/AS02A is a recombinant protein (FMP2.1) based on apical membrane antigen-1 (AMA-1) from the 3D7 clone of P. falciparum, adjuvanted with AS02A. The comparator vaccine was a cell-culture rabies virus vaccine (RabAvert). Sixty healthy, malaria-experienced adults aged 18–55 y were recruited into 2 cohorts and randomized to receive either a half dose or full dose of the malaria vaccine (FMP2.1 25 µg/AS02A 0.25 mL or FMP2.1 50 µg/AS02A 0.5 mL) or rabies vaccine given in 3 doses at 0, 1 and 2 mo, and were followed for 1 y. Solicited symptoms were assessed for 7 d and unsolicited symptoms for 30 d after each vaccination. Serious adverse events were assessed throughout the study. Titers of anti-AMA-1 antibodies were measured by ELISA and P. falciparum growth inhibition assays were performed on sera collected at pre- and post-vaccination time points. Transient local pain and swelling were common and more frequent in both malaria vaccine dosage groups than in the comparator group. Anti-AMA-1 antibodies increased significantly in both malaria vaccine groups, peaking at nearly 5-fold and more than 6-fold higher than baseline in the half-dose and full-dose groups, respectively. Conclusion/Significance The FMP2.1/AS02A vaccine had a good safety profile, was well-tolerated, and was highly immunogenic in malaria-exposed adults. This malaria vaccine is being evaluated in Phase 1 and 2 trials in children at this site. Trial Registration ClinicalTrials.gov NCT00308061


Proceedings of the National Academy of Sciences of the United States of America | 2009

Functional and genetic evidence that the Mal/TIRAP allele variant 180L has been selected by providing protection against septic shock.

Bart Ferwerda; Santos Alonso; Kathy Banahan; Matthew McCall; Evangelos J. Giamarellos-Bourboulis; Bart P. Ramakers; Maria Mouktaroudi; Pamela R. Fain; Neskuts Izagirre; Din Syafruddin; Tudor Cristea; Frank P. Mockenhaupt; Marita Troye-Blomberg; Oliver Kumpf; Boubacar Maiga; Amagana Dolo; Ogobara K. Doumbo; Santhosh Sundaresan; George Bedu-Addo; Reinout van Crevel; Lutz Hamann; Djin-Ye Oh; Ralf R. Schumann; Leo A. B. Joosten; Concepción de la Rúa; Robert W. Sauerwein; Joost P. H. Drenth; Bart Jan Kullberg; Andre van der Ven; Adrian V. S. Hill

Adequate responses by our innate immune system toward invading pathogens were of vital importance for surviving infections, especially before the antibiotic era. Recently, a polymorphism in Mal (Ser180Leu, TIRAP rs8177374), an important adaptor protein downstream of the Toll-like receptor (TLR) 2 and 4 pathways, has been described to provide protection against a broad range of infectious pathogens. We assessed the functional effects of this polymorphism in human experimental endotoxemia, and we demonstrate that individuals bearing the TIRAP 180L allele display an increased, innate immune response to TLR4 and TLR2 ligands, but not to TLR9 stimulation. This phenotype has been related to an increased resistance to infection. However, an overshoot in the release of proinflammatory cytokines by TIRAP 180L homozygous individuals suggests a scenario of balanced evolution. We have also investigated the worldwide distribution of the Ser180Leu polymorphism in 14 populations around the globe to correlate the genetic makeup of TIRAP with the local infectious pressures. Based on the immunological, clinical, and genetic data, we propose that this mutation might have been selected in West Eurasia during the early settlement of this region after the out-of-Africa migration of modern Homo sapiens. This combination of functional and genetic data provides unique insights to our understanding of the pathogenesis of sepsis.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Population structure of the genes encoding the polymorphic Plasmodium falciparum apical membrane antigen 1: Implications for vaccine design

Junhui Duan; Jianbing Mu; Mahamadou A. Thera; Deirdre A. Joy; Sergei L. Kosakovsky Pond; David Diemert; Carole A. Long; Hong Zhou; Kazutoyo Miura; Amed Ouattara; Amagana Dolo; Ogobara K. Doumbo; Xin-Zhuan Su; Louis H. Miller

Immunization with the highly polymorphic Plasmodium falciparum apical membrane antigen 1 (PfAMA1) induces protection in animals but primarily against parasites that express the same or similar alleles. One strategy to overcome the obstacle of polymorphism is to combine PfAMA1 proteins representing major haplotypes into one vaccine. To determine the minimum number of haplotypes that would confer broad protection, we sequenced the coding region of PfAMA1 from 97 clones from around the world and 61 isolates from Mali, identifying 150 haplotypes for domains 1 to 3 that included previous sequences. A clustering algorithm grouped the 150 haplotypes into six populations that were independent of geographic location. Each of the six populations contained haplotypes predominantly of that population (predominant haplotypes) and haplotypes that were a mixture of haplotypes represented in other populations (admixed haplotypes). To determine the biological relevance of the populations identified through the clustering algorithm, antibodies induced against one predominant haplotype of population 1 (3D7) and one admixed haplotype of population 5 (FVO) were tested for their ability to block parasite invasion of erythrocytes. Parasites expressing PfAMA1s belonging to population 1 were efficiently inhibited by 3D7-specific antibodies, whereas parasites expressing PfAMA1s belonging to other populations were not. For FVO-specific antibodies, we observed growth inhibition against itself as well as isolates belonging to populations 3 and 6. Our data suggests that the inclusion of PfAMA1 sequences from each of the six populations may result in a vaccine that induces protective immunity against a broad range of malaria parasites.


Tropical Medicine & International Health | 2000

What does a single determination of malaria parasite density mean? A longitudinal survey in Mali

Véronique Delley; Paul Bouvier; Norman E. Breslow; Ogobara K. Doumbo; Issaka Sagara; Mahamadou Diakite; Anne Mauris; Amagana Dolo; André Rougemont

Summary Temporal variations of blood parasite density were evaluated in a longitudinal study of young, asymptomatic men in a village with endemic malaria in Mali (West Africa). Our main intention was to challenge the value of a single measure of parasite density for the diagnosis of malaria, and to define the level of endemicity in any given area. Parasitaemia and body temperature were recorded three times a day in the wet season (in 39 subjects on 12 days) and in the dry season (in 41 subjects on 13 days). Two thousand nine hundred and fifty seven blood smears (98.5% of the expected number) were examined for malaria parasites. We often found 100‐fold or greater variations in parasite density within a 6‐hour period during individual follow‐up. All infected subjects had frequent negative smears. Although fever was most likely to occur in subjects with a maximum parasite density exceeding 10000 parasites/mm3 (P = 0.009), there was no clear relationship between the timing of these two events. Examples of individual profiles for parasite density and fever are presented. These variations (probably due to a ‘sequestration‐release’ mechanism, which remains to be elucidated) lead us to expect a substantial impact on measurements of endemicity when only a single sample is taken. In this study, the percentage of infected individuals varied between 28.9% and 57.9% during the dry season and between 27.5% and 70.7% during the wet season. The highest rates were observed at midday, and there were significant differences between days. Thus, high parasite density sometimes associated with fever can no longer be considered as the gold standard in the diagnosis of malaria. Other approaches, such as decision‐making processes involving clinical, biological and ecological variables must be developed, especially in highly endemic areas where Plasmodium infection is the rule rather than the exception and the possible causes of fever are numerous.


Vaccine | 2009

A randomized and controlled Phase 1 study of the safety and immunogenicity of the AMA1-C1/Alhydrogel + CPG 7909 vaccine for Plasmodium falciparum malaria in semi-immune Malian adults.

Issaka Sagara; Ruth D. Ellis; Alassane Dicko; Mohamed B. Niambele; Beh Kamate; Ousmane Guindo; Mahamadou S Sissoko; Michael P. Fay; Merepen A. Guindo; Ousmane Kante; Renion Saye; Kazutoyo Miura; Carole A. Long; Gregory Mullen; Mark Pierce; Laura B. Martin; Kelly M. Rausch; Amagana Dolo; Dapa A. Diallo; Louis H. Miller; Ogobara K. Doumbo

A double blind, randomized and controlled Phase 1 clinical trial was conducted to assess the safety and immunogenicity in malaria-exposed adults of the Plasmodium falciparum blood stage vaccine candidate Apical Membrane Antigen 1-Combination 1 (AMA1-C1)/Alhydrogel with and without the novel adjuvant CPG 7909. Participants were healthy adults 18-45 years old living in the village of Donéguébougou, Mali. A total of 24 participants received 2 doses one month apart of either 80 microg AMA1-C1/Alhydrogel or 80 microg AMA1-C1/Alhydrogel + 564 microg CPG 7909. The study started in October 2007 and completed follow up in May 2008. Both vaccines were well tolerated, with only mild local adverse events and no systemic adverse events judged related to vaccination. The difference in antibody responses were over 2-fold higher in the group receiving CPG 7909 for all time points after second vaccination and the differences are statistically significant (all p<0.05). This is the first use of the novel adjuvant CPG 7909 in a malaria-exposed population.

Collaboration


Dive into the Amagana Dolo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Issaka Sagara

University of the Sciences

View shared research outputs
Researchain Logo
Decentralizing Knowledge