Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda D. Buskirk is active.

Publication


Featured researches published by Amanda D. Buskirk.


Analytical Biochemistry | 2008

Discrimination of Aspergillus isolates at the species and strain level by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry fingerprinting.

Justin M. Hettick; Brett J. Green; Amanda D. Buskirk; Michael L. Kashon; James E. Slaven; Erika Janotka; Francoise M. Blachere; Detlef Schmechel; Donald H. Beezhold

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) was used to generate highly reproducible mass spectral fingerprints for 12 species of fungi of the genus Aspergillus and 5 different strains of Aspergillus flavus. Prior to MALDI-TOF MS analysis, the fungi were subjected to three 1-min bead beating cycles in an acetonitrile/trifluoroacetic acid solvent. The mass spectra contain abundant peaks in the range of 5 to 20kDa and may be used to discriminate between species unambiguously. A discriminant analysis using all peaks from the MALDI-TOF MS data yielded error rates for classification of 0 and 18.75% for resubstitution and cross-validation methods, respectively. If a subset of 28 significant peaks is chosen, resubstitution and cross-validation error rates are 0%. Discriminant analysis of the MALDI-TOF MS data for 5 strains of A. flavus using all peaks yielded error rates for classification of 0 and 5% for resubstitution and cross-validation methods, respectively. These data indicate that MALDI-TOF MS data may be used for unambiguous identification of members of the genus Aspergillus at both the species and strain levels.


Analytical Biochemistry | 2011

Fungal pigments inhibit the matrix-assisted laser desorption/ionization time-of-flight mass spectrometry analysis of darkly pigmented fungi

Amanda D. Buskirk; Justin M. Hettick; Itai Chipinda; Brandon F. Law; Paul D. Siegel; James E. Slaven; Brett J. Green; Donald H. Beezhold

Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) has been used to discriminate moniliaceous fungal species; however, darkly pigmented fungi yield poor fingerprint mass spectra that contain few peaks of low relative abundance. In this study, the effect of dark fungal pigments on the observed MALDI mass spectra was investigated. Peptide and protein samples containing varying concentrations of synthetic melanin or fungal pigments extracted from Aspergillus niger were analyzed by MALDI-TOF and MALDI-qTOF (quadrupole TOF) MS. Signal suppression was observed in samples containing greater than 250ng/μl pigment. Microscopic examination of the MALDI sample deposit was usually heterogeneous, with regions of high pigment concentration appearing as black. Acquisition of MALDI mass spectra from these darkly pigmented regions of the sample deposit yielded poor or no [M+H](+) ion signal. In contrast, nonpigmented regions within the sample deposit and hyphal negative control extracts of A. niger were not inhibited. This study demonstrated that dark fungal pigments inhibited the desorption/ionization process during MALDI-MS; however, these fungi may be successfully analyzed by MALDI-TOF MS when culture methods that suppress pigment expression are used. The addition of tricyclazole to the fungal growth media blocks fungal melanin synthesis and results in less melanized fungi that may be analyzed by MALDI-TOF MS.


PLOS ONE | 2011

Role of Germination in Murine Airway CD8+ T-Cell Responses to Aspergillus Conidia

Steven P. Templeton; Amanda D. Buskirk; Brandon F. Law; Brett J. Green; Donald H. Beezhold

Pulmonary exposure to Aspergillus fumigatus has been associated with morbidity and mortality, particularly in immunocompromised individuals. A. fumigatus conidia produce β-glucan, proteases, and other immunostimulatory factors upon germination. Murine models have shown that the ability of A. fumigatus to germinate at physiological temperature may be an important factor that facilitates invasive disease. We observed a significant increase in IFN-γ-producing CD8+ T cells in bronchoalveolar lavage fluid (BALF) of immunocompetent mice that repeatedly aspirated A. fumigatus conidia in contrast to mice challenged with A. versicolor, a species that is not typically associated with invasive, disseminated disease. Analysis of tissue sections indicated the presence of germinating spores in the lungs of mice challenged with A. fumigatus, but not A. versicolor. Airway IFN-γ+CD8+ T-cells were decreased and lung germination was eliminated in mice that aspirated A. fumigatus conidia that were formaldehyde-fixed or heat-inactivated. Furthermore, A. fumigatus particles exhibited greater persistence in the lungs of recipient mice when compared to non-viable A. fumigatus or A. versicolor, and this correlated with increased maintenance of airway memory-phenotype CD8+ T cells. Therefore, murine airway CD8+ T cell-responses to aspiration of Aspergillus conidia may be mediated in part by the ability of conidia to germinate in the host lung tissue. These results provide further evidence of induction of immune responses to fungi based on their ability to invade host tissue.


Medical Mycology | 2010

Murine models of airway fungal exposure and allergic sensitization

Steven P. Templeton; Amanda D. Buskirk; Brett J. Green; Donald H. Beezhold; Detlef Schmechel

Inhalation of common indoor filamentous fungi has been associated with the induction or exacerbation of allergic respiratory disease. The understanding of fungal inhalation and allergic sensitization has significantly advanced with the use of small animal models, especially mouse models. Numerous studies have employed different animal exposure and sensitization techniques, each with inherent advantages and disadvantages that are addressed in this review. In addition, most studies involve exposure of animals to fungal spores or spore extracts while neglecting the influence of hyphal or subcellular fragment exposures. Recent literature examining the potential for hyphae and fungal fragments to induce or exacerbate allergy is discussed. Innate immune recognition of fungal elements and their contribution to lung allergic inflammation in animal models are also reviewed. Though physical properties of fungi play an important role following exposure, host immune development is also critical in airway inflammation and allergy. We discuss the importance of environmental factors that influence early immune development and subsequent susceptibility to allergy. Murine studies that examine the role of intestinal microflora and prenatal or early life environmental factors that promote allergic sensitization are also evaluated. Future studies will require animal models that accurately reflect natural fungal exposures and identify environmental factors that influence immune development and thus promote respiratory fungal allergy and disease.


PLOS ONE | 2014

A Murine Inhalation Model to Characterize Pulmonary Exposure to Dry Aspergillus fumigatus Conidia

Amanda D. Buskirk; Brett J. Green; Angela R. Lemons; Ajay P. Nayak; W. Travis Goldsmith; Michael L. Kashon; Stacey E. Anderson; Justin M. Hettick; Steven P. Templeton; Dori R. Germolec; Donald H. Beezhold

Most murine models of fungal exposure are based on the delivery of uncharacterized extracts or liquid conidia suspensions using aspiration or intranasal approaches. Studies that model exposure to dry fungal aerosols using whole body inhalation have only recently been described. In this study, we aimed to characterize pulmonary immune responses following repeated inhalation of conidia utilizing an acoustical generator to deliver dry fungal aerosols to mice housed in a nose only exposure chamber. Immunocompetent female BALB/cJ mice were exposed to conidia derived from Aspergillus fumigatus wild-type (WT) or a melanin-deficient (Δalb1) strain. Conidia were aerosolized and delivered to mice at an estimated deposition dose of 1×105 twice a week for 4 weeks (8 total). Histopathological and immunological endpoints were assessed 4, 24, 48, and 72 hours after the final exposure. Histopathological analysis showed that conidia derived from both strains induced lung inflammation, especially at 24 and 48 hour time points. Immunological endpoints evaluated in bronchoalveolar lavage fluid (BALF) and the mediastinal lymph nodes showed that exposure to WT conidia led to elevated numbers of macrophages, granulocytes, and lymphocytes. Importantly, CD8+ IL17+ (Tc17) cells were significantly higher in BALF and positively correlated with germination of A. fumigatus WT spores. Germination was associated with specific IgG to intracellular proteins while Δalb1 spores elicited antibodies to cell wall hydrophobin. These data suggest that inhalation exposures may provide a more representative analysis of immune responses following exposures to environmentally and occupationally prevalent fungal contaminants.


Journal of Immunotoxicology | 2014

Pulmonary immune responses to Aspergillus fumigatus in an immunocompetent mouse model of repeated exposures

Amanda D. Buskirk; Steven P. Templeton; Ajay P. Nayak; Justin M. Hettick; Brandon F. Law; Brett J. Green; Donald H. Beezhold

Abstract Aspergillus fumigatus is a filamentous fungus that produces abundant pigmented conidia. Several fungal components have been identified as virulence factors, including melanin; however, the impact of these factors in a repeated exposure model resembling natural environmental exposures remains unknown. This study examined the role of fungal melanin in the stimulation of pulmonary immune responses using immunocompetent BALB/c mice in a multiple exposure model. It compared conidia from wild-type A. fumigatus to two melanin mutants of the same strain, Δarp2 (tan) or Δalb1 (white). Mass spectrometry-based analysis of conidial extracts demonstrated that there was little difference in the protein fingerprint profiles between the three strains. Field emission scanning electron microscopy demonstrated that the immunologically inert Rodlet A layer remained intact in melanin-deficient conidia. Thus, the primary difference between the strains was the extent of melanization. Histopathology indicated that each A. fumigatus strain induced lung inflammation, regardless of the extent of melanization. In mice exposed to Δalb1 conidia, an increase in airway eosinophils and a decrease in neutrophils and CD8+ IL-17+ (Tc17) cells were observed. Additionally, it was shown that melanin mutant conidia were more rapidly cleared from the lungs than wild-type conidia. These data suggest that the presence of fungal melanin may modulate the pulmonary immune response in a mouse model of repeated exposures to A. fumigatus conidia.


Rapid Communications in Mass Spectrometry | 2008

Discrimination of Penicillium isolates by matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry fingerprinting

Justin M. Hettick; Brett J. Green; Amanda D. Buskirk; Michael L. Kashon; James E. Slaven; Erika Janotka; Francoise M. Blachere; Detlef Schmechel; Donald H. Beezhold


Archive | 2011

Discrimination of Fungi by MALDI-TOF Mass Spectrometry

Justin M. Hettick; Brett James Green; Amanda D. Buskirk; James E. Slaven; Michael L. Kashon; Donald H. Beezhold


The Journal of Allergy and Clinical Immunology | 2014

Development and Characterization Of a Murine Model Of Repeated Dry Exposure To Aerosolized Fungal Conidia

Ajay P. Nayak; Amanda D. Buskirk; W. Travis Goldsmith; Angela R. Lemons; Justin M. Hettick; Michael L. Kashon; Amy Cumpston; Jared L. Cumpston; Howard Leonard; Walter McKinney; David G. Frazer; Donald H. Beezhold; Brett J. Green


american thoracic society international conference | 2012

A Nose-Only Inhalation Exposure System For The Delivery Of Dry Fungal Spores (Aspergillus Fumigatus)

William T. Goldsmith; Walter McKinney; Amanda D. Buskirk; Brett J. Green; D.H. Beezhold; David M. Frazer

Collaboration


Dive into the Amanda D. Buskirk's collaboration.

Top Co-Authors

Avatar

Brett J. Green

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Donald H. Beezhold

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Justin M. Hettick

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Michael L. Kashon

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Steven P. Templeton

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Brandon F. Law

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Detlef Schmechel

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Ajay P. Nayak

National Institute for Occupational Safety and Health

View shared research outputs
Top Co-Authors

Avatar

Erika Janotka

National Institute for Occupational Safety and Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge