Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda J. Chamberlain is active.

Publication


Featured researches published by Amanda J. Chamberlain.


Journal of Dairy Science | 2009

Invited review: Genomic selection in dairy cattle: Progress and challenges

Ben J. Hayes; P.J. Bowman; Amanda J. Chamberlain; Michael E. Goddard

A new technology called genomic selection is revolutionizing dairy cattle breeding. Genomic selection refers to selection decisions based on genomic breeding values (GEBV). The GEBV are calculated as the sum of the effects of dense genetic markers, or haplotypes of these markers, across the entire genome, thereby potentially capturing all the quantitative trait loci (QTL) that contribute to variation in a trait. The QTL effects, inferred from either haplotypes or individual single nucleotide polymorphism markers, are first estimated in a large reference population with phenotypic information. In subsequent generations, only marker information is required to calculate GEBV. The reliability of GEBV predicted in this way has already been evaluated in experiments in the United States, New Zealand, Australia, and the Netherlands. These experiments used reference populations of between 650 and 4,500 progeny-tested Holstein-Friesian bulls, genotyped for approximately 50,000 genome-wide markers. Reliabilities of GEBV for young bulls without progeny test results in the reference population were between 20 and 67%. The reliability achieved depended on the heritability of the trait evaluated, the number of bulls in the reference population, the statistical method used to estimate the single nucleotide polymorphism effects in the reference population, and the method used to calculate the reliability. A common finding in 3 countries (United States, New Zealand, and Australia) was that a straightforward BLUP method for estimating the marker effects gave reliabilities of GEBV almost as high as more complex methods. The BLUP method is attractive because the only prior information required is the additive genetic variance of the trait. All countries included a polygenic effect (parent average breeding value) in their GEBV calculation. This inclusion is recommended to capture any genetic variance not associated with the markers, and to put some selection pressure on low-frequency QTL that may not be captured by the markers. The reliabilities of GEBV achieved were significantly greater than the reliability of parental average breeding values, the current criteria for selection of bull calves to enter progeny test teams. The increase in reliability is sufficiently high that at least 2 dairy breeding companies are already marketing bull teams for commercial use based on their GEBV only, at 2 yr of age. This strategy should at least double the rate of genetic gain in the dairy industry. Many challenges with genomic selection and its implementation remain, including increasing the accuracy of GEBV, integrating genomic information into national and international genetic evaluations, and managing long-term genetic gain.


Nature Genetics | 2014

Whole-genome sequencing of 234 bulls facilitates mapping of monogenic and complex traits in cattle

Hans D. Daetwyler; Aurélien Capitan; Hubert Pausch; Paul Stothard; Rianne van Binsbergen; Rasmus Froberg Brøndum; Xiaoping Liao; Anis Djari; Sabrina Rodriguez; Cécile Grohs; Diane Esquerre; Olivier Bouchez; Marie-Noëlle Rossignol; Christophe Klopp; Dominique Rocha; Sébastien Fritz; A. Eggen; Phil J. Bowman; David Coote; Amanda J. Chamberlain; Charlotte Anderson; Curt P VanTassell; Ina Hulsegge; Michael E. Goddard; Bernt Guldbrandtsen; Mogens Sandø Lund; Roel F. Veerkamp; Didier Boichard; Ruedi Fries; Ben J. Hayes

The 1000 bull genomes project supports the goal of accelerating the rates of genetic gain in domestic cattle while at the same time considering animal health and welfare by providing the annotated sequence variants and genotypes of key ancestor bulls. In the first phase of the 1000 bull genomes project, we sequenced the whole genomes of 234 cattle to an average of 8.3-fold coverage. This sequencing includes data for 129 individuals from the global Holstein-Friesian population, 43 individuals from the Fleckvieh breed and 15 individuals from the Jersey breed. We identified a total of 28.3 million variants, with an average of 1.44 heterozygous sites per kilobase for each individual. We demonstrate the use of this database in identifying a recessive mutation underlying embryonic death and a dominant mutation underlying lethal chrondrodysplasia. We also performed genome-wide association studies for milk production and curly coat, using imputed sequence variants, and identified variants associated with these traits in cattle.


PLOS Genetics | 2010

Genetic architecture of complex traits and accuracy of genomic prediction : Coat colour, milk-fat percentage, and type in Holstein cattle as contrasting model traits.

Ben J. Hayes; J.E. Pryce; Amanda J. Chamberlain; Phil J. Bowman; Michael E. Goddard

Prediction of genetic merit using dense SNP genotypes can be used for estimation of breeding values for selection of livestock, crops, and forage species; for prediction of disease risk; and for forensics. The accuracy of these genomic predictions depends in part on the genetic architecture of the trait, in particular number of loci affecting the trait and distribution of their effects. Here we investigate the difference among three traits in distribution of effects and the consequences for the accuracy of genomic predictions. Proportion of black coat colour in Holstein cattle was used as one model complex trait. Three loci, KIT, MITF, and a locus on chromosome 8, together explain 24% of the variation of proportion of black. However, a surprisingly large number of loci of small effect are necessary to capture the remaining variation. A second trait, fat concentration in milk, had one locus of large effect and a host of loci with very small effects. Both these distributions of effects were in contrast to that for a third trait, an index of scores for a number of aspects of cow confirmation (“overall type”), which had only loci of small effect. The differences in distribution of effects among the three traits were quantified by estimating the distribution of variance explained by chromosome segments containing 50 SNPs. This approach was taken to account for the imperfect linkage disequilibrium between the SNPs and the QTL affecting the traits. We also show that the accuracy of predicting genetic values is higher for traits with a proportion of large effects (proportion black and fat percentage) than for a trait with no loci of large effect (overall type), provided the method of analysis takes advantage of the distribution of loci effects.


Journal of Dairy Science | 2010

A validated genome-wide association study in 2 dairy cattle breeds for milk production and fertility traits using variable length haplotypes

J.E. Pryce; S. Bolormaa; Amanda J. Chamberlain; P.J. Bowman; K. Savin; Michael E. Goddard; Ben J. Hayes

Genome-wide association studies (GWAS) were used to discover genomic regions explaining variation in dairy production and fertility traits. Associations were detected with either single nucleotide polymorphism (SNP) markers or haplotypes of SNP alleles. An across-breed validation strategy was used to narrow the genomic interval containing causative mutations. There were 39,048 SNP tested in a discovery population of 780 Holstein sires and validated in 386 Holsteins and 364 Jersey sires. Previously identified mutations affecting milk production traits were confirmed. In addition, several novel regions were identified, including a putative quantitative trait loci for fertility on chromosome 18 that was detected only using haplotypes greater than 3 SNP long. It was found that the precision of quantitative trait loci mapping increased with haplotype length as did the number of validated haplotypes discovered, especially across breed. Promising candidate genes have been identified in several of the validated regions.


PLOS ONE | 2009

A Validated Genome Wide Association Study to Breed Cattle Adapted to an Environment Altered by Climate Change

Ben J. Hayes; Phil J. Bowman; Amanda J. Chamberlain; K. Savin; Curt P. Van Tassell; Tad S. Sonstegard; Michael E. Goddard

Continued production of food in areas predicted to be most affected by climate change, such as dairy farming regions of Australia, will be a major challenge in coming decades. Along with rising temperatures and water shortages, scarcity of inputs such as high energy feeds is predicted. With the motivation of selecting cattle adapted to these changing environments, we conducted a genome wide association study to detect DNA markers (single nucleotide polymorphisms) associated with the sensitivity of milk production to environmental conditions. To do this we combined historical milk production and weather records with dense marker genotypes on dairy sires with many daughters milking across a wide range of production environments in Australia. Markers associated with sensitivity of milk production to feeding level and sensitivity of milk production to temperature humidity index on chromosome nine and twenty nine respectively were validated in two independent populations, one a different breed of cattle. As the extent of linkage disequilibrium across cattle breeds is limited, the underlying causative mutations have been mapped to a small genomic interval containing two promising candidate genes. The validated marker panels we have reported here will aid selection for high milk production under anticipated climate change scenarios, for example selection of sires whose daughters will be most productive at low levels of feeding.


Animal Genetics | 2009

A genome map of divergent artificial selection between Bos taurus dairy cattle and Bos taurus beef cattle.

Ben J. Hayes; Amanda J. Chamberlain; Sean MacEachern; K. Savin; H. McPartlan; Iona M. MacLeod; L. Sethuraman; Michael E. Goddard

A number of cattle breeds have become highly specialized for milk or beef production, following strong artificial selection for these traits. In this paper, we compare allele frequencies from 9323 single nucleotide polymorphism (SNP) markers genotyped in dairy and beef cattle breeds averaged in sliding windows across the genome, with the aim of identifying divergently selected regions of the genome between the production types. The value of the method for identifying selection signatures was validated by four sources of evidence. First, differences in allele frequencies between dairy and beef cattle at individual SNPs were correlated with the effects of those SNPs on production traits. Secondly, large differences in allele frequencies generally occurred in the same location for two independent data sets (correlation 0.45) between sliding window averages. Thirdly, the largest differences in sliding window average difference in allele frequencies were found on chromosome 20 in the region of the growth hormone receptor gene, which carries a mutation known to have an effect on milk production traits in a number of dairy populations. Finally, for the chromosome tested, the location of selection signatures between dairy and beef cattle was correlated with the location of selection signatures within dairy cattle.


Genetics Research | 2007

Accuracy of marker-assisted selection with single markers and marker haplotypes in cattle

Ben J. Hayes; Amanda J. Chamberlain; H. McPartlan; Iona M. MacLeod; L. Sethuraman; Michael E. Goddard

A key question for the implementation of marker-assisted selection (MAS) using markers in linkage disequilibrium with quantitative trait loci (QTLs) is how many markers surrounding each QTL should be used to ensure the marker or marker haplotypes are in sufficient linkage disequilibrium (LD) with the QTL. In this paper we compare the accuracy of MAS using either single markers or marker haplotypes in an Angus cattle data set consisting of 9323 genome-wide single nucleotide polymorphisms (SNPs) genotyped in 379 Angus cattle. The extent of LD in the data set was such that the average marker-marker r2 was 0.2 at 200 kb. The accuracy of MAS increased as the number of markers in the haplotype surrounding the QTL increased, although only when the number of markers in the haplotype was 4 or greater did the accuracy exceed that achieved when the SNP in the highest LD with the QTL was used. A large number of phenotypic records (>1000) were required to accurately estimate the effects of the haplotypes.


Genetics Selection Evolution | 2015

Improved precision of QTL mapping using a nonlinear Bayesian method in a multi-breed population leads to greater accuracy of across-breed genomic predictions

Kathryn E. Kemper; C. M. Reich; P.J. Bowman; Christy Vander Jagt; Amanda J. Chamberlain; B. A. Mason; Benjamin J. Hayes; Michael E. Goddard

BackgroundGenomic selection is increasingly widely practised, particularly in dairy cattle. However, the accuracy of current predictions using GBLUP (genomic best linear unbiased prediction) decays rapidly across generations, and also as selection candidates become less related to the reference population. This is likely caused by the effects of causative mutations being dispersed across many SNPs (single nucleotide polymorphisms) that span large genomic intervals. In this paper, we hypothesise that the use of a nonlinear method (BayesR), combined with a multi-breed (Holstein/Jersey) reference population will map causative mutations with more precision than GBLUP and this, in turn, will increase the accuracy of genomic predictions for selection candidates that are less related to the reference animals.ResultsBayesR improved the across-breed prediction accuracy for Australian Red dairy cattle for five milk yield and composition traits by an average of 7% over the GBLUP approach (Australian Red animals were not included in the reference population). Using the multi-breed reference population with BayesR improved accuracy of prediction in Australian Red cattle by 2 – 5% compared to using BayesR with a single breed reference population. Inclusion of 8478 Holstein and 3917 Jersey cows in the reference population improved accuracy of predictions for these breeds by 4 and 5%. However, predictions for Holstein and Jersey cattle were similar using within-breed and multi-breed reference populations. We propose that the improvement in across-breed prediction achieved by BayesR with the multi-breed reference population is due to more precise mapping of quantitative trait loci (QTL), which was demonstrated for several regions. New candidate genes with functional links to milk synthesis were identified using differential gene expression in the mammary gland.ConclusionsQTL detection and genomic prediction are usually considered independently but persistence of genomic prediction accuracies across breeds requires accurate estimation of QTL effects. We show that accuracy of across-breed genomic predictions was higher with BayesR than with GBLUP and that BayesR mapped QTL more precisely. Further improvements of across-breed accuracy of genomic predictions and QTL mapping could be achieved by increasing the size of the reference population, including more breeds, and possibly by exploiting pleiotropic effects to improve mapping efficiency for QTL with small effects.


Journal of Animal Breeding and Genetics | 2010

Power of a genome scan to detect and locate quantitative trait loci in cattle using dense single nucleotide polymorphisms

Iona M. MacLeod; Ben J. Hayes; K. W. Savin; Amanda J. Chamberlain; H. C. McPartlan; Michael E. Goddard

There is increasing use of dense single nucleotide polymorphisms (SNPs) for whole-genome association studies (WGAS) in livestock to map and identify quantitative trait loci (QTL). These studies rely on linkage disequilibrium (LD) to detect an association between SNP genotypes and phenotypes. The power and precision of these WGAS are unknown, and will depend on the extent of LD in the experimental population. One complication for WGAS in livestock populations is that they typically consist of many paternal half-sib families, and in some cases full-sib families; unless this subtle population stratification is accounted for, many spurious associations may be reported. Our aim was to investigate the power, precision and false discovery rates of WGAS for QTL discovery, with a commercial SNP array, given existing patterns of LD in cattle. We also tested the efficiency of selective genotyping animals. A total of 365 cattle were genotyped for 9232 SNPs. We simulated a QTL effect as well as polygenic and environmental effects for all animals. One QTL was simulated on a randomly chosen SNP and accounted for 5%, 10% or 18% of the total variance. The power to detect a moderate-sized additive QTL (5% of the phenotypic variance) with 365 animals genotyped was 37% (p < 0.001). Most importantly, if pedigree structure was not accounted for, the number of false positives significantly increased above those expected by chance alone. Selective genotyping also resulted in a significant increase in false positives, even when pedigree structure was accounted for.


Genetics | 2007

The Number of Loci That Affect Milk Production Traits in Dairy Cattle

Amanda J. Chamberlain; H. McPartlan; Michael E. Goddard

We have used the results of an experiment mapping quantitative trait loci (QTL) affecting milk yield and composition to estimate the total number of QTL affecting these traits. We did this by estimating the number of segregating QTL within a half-sib daughter design using logic similar to that used to estimate the “false discovery rate” (FDR). In a half-sib daughter design with six sire families we estimate that the average sire was heterozygous for ∼5 QTL per trait. Also, in most cases only one sire was heterozygous for any one QTL; therefore at least 30 QTL were likely to be segregating for these milk production traits in this Holstein population.

Collaboration


Dive into the Amanda J. Chamberlain's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Ben J. Hayes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Phil J. Bowman

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar

S. Bolormaa

Cooperative Research Centre

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge