Amanda J. Lohan
University College Dublin
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amanda J. Lohan.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Carsten Kröger; Shane C. Dillon; Andrew D. S. Cameron; Kai Papenfort; Sathesh K. Sivasankaran; Karsten Hokamp; Yanjie Chao; Alexandra Sittka; Magali Hébrard; Kristian Händler; Aoife Colgan; Pimlapas Leekitcharoenphon; Gemma C. Langridge; Amanda J. Lohan; Brendan J. Loftus; Sacha Lucchini; David W. Ussery; Charles J. Dorman; Nicholas R. Thomson; Jörg Vogel; Jay C. D. Hinton
More than 50 y of research have provided great insight into the physiology, metabolism, and molecular biology of Salmonella enterica serovar Typhimurium (S. Typhimurium), but important gaps in our knowledge remain. It is clear that a precise choreography of gene expression is required for Salmonella infection, but basic genetic information such as the global locations of transcription start sites (TSSs) has been lacking. We combined three RNA-sequencing techniques and two sequencing platforms to generate a robust picture of transcription in S. Typhimurium. Differential RNA sequencing identified 1,873 TSSs on the chromosome of S. Typhimurium SL1344 and 13% of these TSSs initiated antisense transcripts. Unique findings include the TSSs of the virulence regulators phoP, slyA, and invF. Chromatin immunoprecipitation revealed that RNA polymerase was bound to 70% of the TSSs, and two-thirds of these TSSs were associated with σ70 (including phoP, slyA, and invF) from which we identified the −10 and −35 motifs of σ70-dependent S. Typhimurium gene promoters. Overall, we corrected the location of important genes and discovered 18 times more promoters than identified previously. S. Typhimurium expresses 140 small regulatory RNAs (sRNAs) at early stationary phase, including 60 newly identified sRNAs. Almost half of the experimentally verified sRNAs were found to be unique to the Salmonella genus, and <20% were found throughout the Enterobacteriaceae. This description of the transcriptional map of SL1344 advances our understanding of S. Typhimurium, arguably the most important bacterial infection model.
PLOS Pathogens | 2012
Clarissa Pozzi; Elaine M. Waters; Justine K. Rudkin; Carolyn R. Schaeffer; Amanda J. Lohan; Pin Tong; Brendan J. Loftus; Gerald B. Pier; Paul D. Fey; Ruth C. Massey; James P. O'Gara
Clinical isolates of Staphylococcus aureus can express biofilm phenotypes promoted by the major cell wall autolysin and the fibronectin-binding proteins or the icaADBC-encoded polysaccharide intercellular adhesin/poly-N-acetylglucosamine (PIA/PNAG). Biofilm production in methicillin-susceptible S. aureus (MSSA) strains is typically dependent on PIA/PNAG whereas methicillin-resistant isolates express an Atl/FnBP-mediated biofilm phenotype suggesting a relationship between susceptibility to β-lactam antibiotics and biofilm. By introducing the methicillin resistance gene mecA into the PNAG-producing laboratory strain 8325-4 we generated a heterogeneously resistant (HeR) strain, from which a homogeneous, high-level resistant (HoR) derivative was isolated following exposure to oxacillin. The HoR phenotype was associated with a R602H substitution in the DHHA1 domain of GdpP, a recently identified c-di-AMP phosphodiesterase with roles in resistance/tolerance to β-lactam antibiotics and cell envelope stress. Transcription of icaADBC and PNAG production were impaired in the 8325-4 HoR derivative, which instead produced a proteinaceous biofilm that was significantly inhibited by antibodies against the mecA-encoded penicillin binding protein 2a (PBP2a). Conversely excision of the SCCmec element in the MRSA strain BH1CC resulted in oxacillin susceptibility and reduced biofilm production, both of which were complemented by mecA alone. Transcriptional activity of the accessory gene regulator locus was also repressed in the 8325-4 HoR strain, which in turn was accompanied by reduced protease production and significantly reduced virulence in a mouse model of device infection. Thus, homogeneous methicillin resistance has the potential to affect agr- and icaADBC-mediated phenotypes, including altered biofilm expression and virulence, which together are consistent with the adaptation of healthcare-associated MRSA strains to the antibiotic-rich hospital environment in which they are frequently responsible for device-related infections in immuno-compromised patients.
Nature Structural & Molecular Biology | 2012
Gerard L. Brien; Guillermo Gambero; David J. O'Connell; Emilia Jerman; Siobhán Turner; Chris M. Egan; Eiseart J. Dunne; Maike C. Jürgens; Kieran Wynne; Lianhua Piao; Amanda J. Lohan; Neil Ferguson; Xiaobing Shi; Krishna Sinha; Brendan J. Loftus; Gerard Cagney; Adrian P. Bracken
Polycomb group proteins are repressive chromatin modifiers with essential roles in metazoan development, cellular differentiation and cell fate maintenance. How Polycomb proteins access active chromatin to confer transcriptional silencing during lineage transitions remains unclear. Here we show that the Polycomb repressive complex 2 (PRC2) component PHF19 binds trimethylated histone H3 Lys36 (H3K36me3), a mark of active chromatin, via its Tudor domain. PHF19 associates with the H3K36me3 demethylase NO66, and it is required to recruit the PRC2 complex and NO66 to stem cell genes during differentiation, leading to PRC2-mediated trimethylation of histone H3 Lys27 (H3K27), loss of H3K36me3 and transcriptional silencing. We propose a model whereby PHF19 functions during mouse embryonic stem cell differentiation to transiently bind the H3K36me3 mark via its Tudor domain, forming essential contact points that allow recruitment of PRC2 and H3K36me3 demethylase activity to active gene loci during their transition to a Polycomb-repressed state.
Proceedings of the National Academy of Sciences of the United States of America | 2012
Samuel E. Wuest; Diarmuid S. Ó'Maoiléidigh; Liina Rae; Kwasniewska K; Raganelli A; Hanczaryk K; Amanda J. Lohan; Brendan J. Loftus; Emmanuelle Graciet; Frank Wellmer
How different organs are formed from small sets of undifferentiated precursor cells is a key question in developmental biology. To understand the molecular mechanisms underlying organ specification in plants, we studied the function of the homeotic selector genes APETALA3 (AP3) and PISTILLATA (PI), which control the formation of petals and stamens during Arabidopsis flower development. To this end, we characterized the activities of the transcription factors that AP3 and PI encode throughout flower development by using perturbation assays as well as transcript profiling and genomewide localization studies, in combination with a floral induction system that allows a stage-specific analysis of flower development by genomic technologies. We discovered considerable spatial and temporal differences in the requirement for AP3/PI activity during flower formation and show that they control different sets of genes at distinct phases of flower development. The genomewide identification of target genes revealed that AP3/PI act as bifunctional transcription factors: they activate genes involved in the control of numerous developmental processes required for organogenesis and repress key regulators of carpel formation. Our results imply considerable changes in the composition and topology of the gene network controlled by AP3/PI during the course of flower development. We discuss our results in light of a model for the mechanism underlying sex-determination in seed plants, in which AP3/PI orthologues might act as a switch between the activation of male and the repression of female development.
Emerging Infectious Diseases | 2013
Rebuma Firdessa; Stefan Berg; Elena Hailu; Esther Schelling; Balako Gumi; Girume Erenso; Endalamaw Gadisa; Teklu Kiros; Meseret Habtamu; Jemal Hussein; Jakob Zinsstag; Brian D. Robertson; Gobena Ameni; Amanda J. Lohan; Brendan J. Loftus; Iñaki Comas; Sebastien Gagneux; Rea Tschopp; Lawrence Yamuah; Glyn Hewinson; Stephen V. Gordon; Douglas B. Young; Abraham Aseffa
Molecular typing of 964 specimens from patients in Ethiopia with lymph node or pulmonary tuberculosis showed a similar distribution of Mycobacterium tuberculosis strains between the 2 disease manifestations and a minimal role for M. bovis. We report a novel phylogenetic lineage of M. tuberculosis strongly associated with the Horn of Africa.
The Plant Cell | 2013
Diarmuid S. Ó'Maoiléidigh; Samuel E. Wuest; Liina Rae; Raganelli A; Patrick T. Ryan; Kwasniewska K; P Das; Amanda J. Lohan; Brendan J. Loftus; Emmanuelle Graciet; Frank Wellmer
The transcription factor AGAMOUS mediates the specification of reproductive floral organs by controlling the expression of a large number of genes with regulatory functions involved in a multitude of developmental processes. Together with other floral organ identity factors, it contributes to the suppression of the leaf development program through the direct suppression of key regulatory genes. The floral organ identity factor AGAMOUS (AG) is a key regulator of Arabidopsis thaliana flower development, where it is involved in the formation of the reproductive floral organs as well as in the control of meristem determinacy. To obtain insights into how AG specifies organ fate, we determined the genes and processes acting downstream of this C function regulator during early flower development and distinguished between direct and indirect effects. To this end, we combined genome-wide localization studies, gene perturbation experiments, and computational analyses. Our results demonstrate that AG controls flower development to a large extent by controlling the expression of other genes with regulatory functions, which are involved in mediating a plethora of different developmental processes. One aspect of this function is the suppression of the leaf development program in emerging floral primordia. Using trichome initiation as an example, we demonstrate that AG inhibits an important aspect of leaf development through the direct control of key regulatory genes. A comparison of the gene expression programs controlled by AG and the B function regulators APETALA3 and PISTILLATA, respectively, showed that while they control many developmental processes in conjunction, they also have marked antagonistic, as well as independent activities.
Genome Biology | 2015
Stephen D. E. Park; David A. Magee; Paul A. McGettigan; Matthew D. Teasdale; Ceiridwen J. Edwards; Amanda J. Lohan; Alison Murphy; Martin Braud; Mark Ta Donoghue; Yuan Liu; Andrew T. Chamberlain; Kevin Rue-Albrecht; Steven G. Schroeder; Charles Spillane; Shuaishuai Tai; Daniel G. Bradley; Tad S. Sonstegard; Brendan J. Loftus; David E. MacHugh
BackgroundDomestication of the now-extinct wild aurochs, Bos primigenius, gave rise to the two major domestic extant cattle taxa, B. taurus and B. indicus. While previous genetic studies have shed some light on the evolutionary relationships between European aurochs and modern cattle, important questions remain unanswered, including the phylogenetic status of aurochs, whether gene flow from aurochs into early domestic populations occurred, and which genomic regions were subject to selection processes during and after domestication. Here, we address these questions using whole-genome sequencing data generated from an approximately 6,750-year-old British aurochs bone and genome sequence data from 81 additional cattle plus genome-wide single nucleotide polymorphism data from a diverse panel of 1,225 modern animals.ResultsPhylogenomic analyses place the aurochs as a distinct outgroup to the domestic B. taurus lineage, supporting the predominant Near Eastern origin of European cattle. Conversely, traditional British and Irish breeds share more genetic variants with this aurochs specimen than other European populations, supporting localized gene flow from aurochs into the ancestors of modern British and Irish cattle, perhaps through purposeful restocking by early herders in Britain. Finally, the functions of genes showing evidence for positive selection in B. taurus are enriched for neurobiology, growth, metabolism and immunobiology, suggesting that these biological processes have been important in the domestication of cattle.ConclusionsThis work provides important new information regarding the origins and functional evolution of modern cattle, revealing that the interface between early European domestic populations and wild aurochs was significantly more complex than previously thought.
PLOS ONE | 2011
Barbara A. Weissenmayer; James Prendergast; Amanda J. Lohan; Brendan J. Loftus
Second generation sequencing has prompted a number of groups to re-interrogate the transcriptomes of several bacterial and archaeal species. One of the central findings has been the identification of complex networks of small non-coding RNAs that play central roles in transcriptional regulation in all growth conditions and for the pathogens interaction with and survival within host cells. Legionella pneumophila is a Gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila during exponential and post-exponential broth growth and during the replicative and transmissive phase of infection inside A. castellanii. We extend previous microarray based studies as well as uncovering evidence of a complex regulatory architecture underpinned by numerous non-coding RNAs. Over seventy new non-coding RNAs could be identified; many of them appear to be strain specific and in configurations not previously reported. We discover a family of non-coding RNAs preferentially expressed during infection conditions and identify a second copy of 6S RNA in L. pneumophila. We show that the newly discovered putative 6S RNA as well as a number of other non-coding RNAs show evidence for antisense transcription. The nature and extent of the non-coding RNAs and their expression patterns suggests that these may well play central roles in the regulation of Legionella spp. specific traits and offer clues as to how L. pneumophila adapts to its intracellular niche. The expression profiles outlined in the study have been deposited into Genbanks Gene Expression Omnibus (GEO) database under the series accession GSE27232.
BMC Genomics | 2010
Beatrice A. McGivney; Paul A. McGettigan; John A. Browne; A.C.O. Evans; Rita G. Fonseca; Brendan J. Loftus; Amanda J. Lohan; David E. MacHugh; Barbara A. Murphy; Lisa M. Katz; Emmeline W. Hill
BackgroundDigital gene expression profiling was used to characterize the assembly of genes expressed in equine skeletal muscle and to identify the subset of genes that were differentially expressed following a ten-month period of exercise training. The study cohort comprised seven Thoroughbred racehorses from a single training yard. Skeletal muscle biopsies were collected at rest from the gluteus medius at two time points: T1 - untrained, (9 ± 0.5 months old) and T2 - trained (20 ± 0.7 months old).ResultsThe most abundant mRNA transcripts in the muscle transcriptome were those involved in muscle contraction, aerobic respiration and mitochondrial function. A previously unreported over-representation of genes related to RNA processing, the stress response and proteolysis was observed. Following training 92 tags were differentially expressed of which 74 were annotated. Sixteen genes showed increased expression, including the mitochondrial genes ACADVL, MRPS21 and SLC25A29 encoded by the nuclear genome. Among the 58 genes with decreased expression, MSTN, a negative regulator of muscle growth, had the greatest decrease.Functional analysis of all expressed genes using FatiScan revealed an asymmetric distribution of 482 Gene Ontology (GO) groups and 18 KEGG pathways. Functional groups displaying highly significant (P < 0.0001) increased expression included mitochondrion, oxidative phosphorylation and fatty acid metabolism while functional groups with decreased expression were mainly associated with structural genes and included the sarcoplasm, laminin complex and cytoskeleton.ConclusionExercise training in Thoroughbred racehorses results in coordinate changes in the gene expression of functional groups of genes related to metabolism, oxidative phosphorylation and muscle structure.
Molecular Microbiology | 2013
Alexandre Pawlik; Guillaume Garnier; Mickael Orgeur; Pin Tong; Amanda J. Lohan; Fabien Le Chevalier; Guillaume Sapriel; Anne-Laure Roux; Kevin C. Conlon; Nadine Honoré; Marie-Agnès Dillies; Laurence Ma; Christiane Bouchier; Jean-Yves Coppée; Jean-Louis Gaillard; Stephen V. Gordon; Brendan J. Loftus; Roland Brosch; Jean Louis Herrmann
Mycobacterium abscessus is an emerging pathogen that is increasingly recognized as a relevant cause of human lung infection in cystic fibrosis patients. This highly antibiotic‐resistant mycobacterium is an exception within the rapidly growing mycobacteria, which are mainly saprophytic and non‐pathogenic organisms. M. abscessus manifests as either a smooth (S) or a rough (R) colony morphotype, which is of clinical importance as R morphotypes are associated with more severe and persistent infections. To better understand the molecular mechanisms behind the S/R alterations, we analysed S and R variants of three isogenic M. abscessus S/R pairs using an unbiased approach involving genome and transcriptome analyses, transcriptional fusions and integrating constructs. This revealed different small insertions, deletions (indels) or single nucleotide polymorphisms within the non‐ribosomal peptide synthase gene cluster mps1‐mps2‐gap or mmpl4b in the three R variants, consistent with the transcriptional differences identified within this genomic locus that is implicated in the synthesis and transport of Glyco‐Peptido‐Lipids (GPL). In contrast to previous reports, the identification of clearly defined genetic lesions responsible for the loss of GPL‐production or transport makes a frequent switching back‐and‐forth between smooth and rough morphologies in M. abscessus highly unlikely, which is important for our understanding of persistent M. abscessus infections.