Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amanda L. Hudson is active.

Publication


Featured researches published by Amanda L. Hudson.


Scientific Reports | 2016

Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma.

Nicole R. Parker; Amanda L. Hudson; Peter Khong; Jonathon F. Parkinson; Trisha Dwight; Rowan J. Ikin; Ying Zhu; Zhangkai Jason Cheng; Fatemeh Vafaee; Jason J. Chen; Helen Wheeler; Viive M. Howell

Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.


Molecular Endocrinology | 2015

Role of Nongenomic Signaling Pathways Activated by Aldosterone During Cardiac Reperfusion Injury

Anthony W. Ashton; Thi Yen Loan Le; Celso E. Gomez-Sanchez; Marie-Christine Morel-Kopp; Brett C. McWhinney; Amanda L. Hudson; Anastasia S. Mihailidou

Aldosterone (Aldo) activates both genomic and nongenomic signaling pathways in the cardiovascular system. Activation of genomic signaling pathways contributes to the adverse cardiac actions of Aldo during reperfusion injury; however, the extent nongenomic signaling pathways contribute has been difficult to identify due to lack of a specific ligand that activates only nongenomic signaling pathways. Using a pegylated aldosterone analog, aldosterone-3-carboxymethoxylamine-TFP ester conjugated to methoxypegylated amine (Aldo-PEG), we are able for the first time to distinguish between nongenomic and genomic cardiac actions of Aldo. We confirm Aldo-PEG activates phosphorylation of ERK1/2 in rat cardiomyocyte H9c2 cells similar to Aldo and G protein-coupled receptor 30 (GPR30 or GPER) agonist G1. GPER antagonist, G36, but not mineralocorticoid receptor (MR) antagonist spironolactone, prevented ERK1/2 phosphorylation by Aldo, Aldo-PEG, and G1. The selective nongenomic actions of Aldo-PEG are confirmed, with Aldo-PEG increasing superoxide production in H9c2 cells to similar levels as Aldo but having no effect on subcellular localization of MR. Striatin serves as a scaffold for GPER and MR, with GPER antagonist G36, but not spironolactone, restoring MR-striatin complexes. Aldo-PEG had no effect on MR-dependent transcriptional activation, whereas Aldo increased transcript levels of serum-regulated kinase 1 and plasminogen activator inhibitor-1. Using our ex vivo experimental rat model of myocardial infarction, we found aggravated infarct size and apoptosis by Aldo but not Aldo-PEG. Our studies confirm that in the heart, activation of nongenomic signaling pathways alone are not sufficient to trigger the deleterious effects of aldosterone during myocardial reperfusion injury.


Seminars in Cell & Developmental Biology | 2014

SV40 TAg mouse models of cancer.

Emily K. Colvin; Chris Weir; Rowan J. Ikin; Amanda L. Hudson

The discovery of a number of viruses with the ability to induce tumours in animals and transform human cells has vastly impacted cancer research. Much of what is known about tumorigenesis today regarding tumour drivers and tumour suppressors has been discovered through experiments using viruses. The SV40 virus has proven extremely successful in generating transgenic models of many human cancer types and this review provides an overview of these models and seeks to give evidence as to their relevance in this modern era of personalised medicine and technological advancements.


Seminars in Cell & Developmental Biology | 2014

From mice to men: GEMMs as trial patients for new NSCLC therapies

Sarah A. Hayes; Amanda L. Hudson; Stephen Clarke; Mark P. Molloy; Viive M. Howell

Given the large socio-economic burden of cancer, there is an urgent need for in vivo animal cancer models that can provide a rationale for personalised therapeutic regimens that are translatable to the clinic. Recent developments in establishing mouse models that closely resemble human lung cancers involve the application of genetically engineered mouse models (GEMMs) for use in drug efficacy studies or to guide patient therapy. Here, we review recent applications of GEMMs in non-small cell lung cancer research for drug development and their potential in aiding biomarker discovery and understanding of biological mechanisms behind clinical outcomes and drug interactions.


Cancer immunology research | 2014

Streptavidin: A Novel Immunostimulant for the Selection and Delivery of Autologous and Syngeneic Tumor Vaccines

Chris Weir; Amanda L. Hudson; Elizabeth Moon; Angus Ross; Miles Alexander; Lyndsay Peters; Veronika Langova; Stephen Clarke; Nick Pavlakis; Ross A. Davey; Viive M. Howell

Weir and colleagues describe a novel method that uses streptavidin as an immune stimulant for autologous and syngeneic cancer vaccines. Streptavidin was an effective novel vaccine carrier for soluble tumor proteins that provided survival advantage in the syngeneic cancer model. Induction of antitumor immunity using autologous tumor proteins is an attractive approach to cancer therapy. However, better methods and stimulants to present these autologous proteins back to the immune system are needed. Here, we identify streptavidin as a novel carrier protein and stimulant, and test the efficacy of both syngeneic (rat) and autologous vaccines (dogs) using streptavidin in combination with reduced soluble tumor proteins. Initial syngeneic vaccine studies in the 9L rat glioma model were used to optimize vaccine dose and selectivity. Cytokine and blood analysis was used to monitor the response. Rats receiving two vaccinations of syngeneic tumor vaccine demonstrated a statistically significant (P < 0.05) survival advantage compared with controls (adjuvant only). Notably, vaccination also led to remission rates of between 30% and 60% in the aggressive 9L glioma model. Antibodies to streptavidin were detected in the serum of vaccinated rats; however, antibody levels did not correlate with the response. The cytokine TNF-α was upregulated in vaccine-treated rats, whereas ICAM1 was downregulated. After engraftment, vaccinated rats maintained CD4+, CD8+ T cells, and total lymphocyte levels closer to normal baseline than those in the controls. Twenty-five dogs treated with autologous vaccine preparations using streptavidin as a stimulant showed no adverse reactions, irrespective of additional chemotherapy and other medications. In this study, we developed a novel method for producing syngeneic and autologous vaccines using streptavidin selectivity and immunogenicity. These vaccines show efficacy in the 9L glioma rat model. Safety was also demonstrated in canine patients presenting with cancer treated with autologous vaccine. Cancer Immunol Res; 2(5); 469–79. ©2014 AACR.


Annals of Oncology | 2015

EVERSUN: a phase 2 trial of alternating sunitinib and everolimus as first-line therapy for advanced renal cell carcinoma

Ian D. Davis; Anne Long; Sonia Yip; David Espinoza; Jennifer F. Thompson; Ganessan Kichenadasse; Michelle L. Harrison; Rm Lowenthal; Nick Pavlakis; Arun Azad; George Kannourakis; Christopher Steer; David B Goldstein; Jeremy David Shapiro; Rozelle Harvie; Lidija Jovanovic; Amanda L. Hudson; Colleen C. Nelson; Martin R. Stockler; Andrew J. Martin

BACKGROUND We hypothesised that alternating inhibitors of the vascular endothelial growth factor receptor (VEGFR) and mammalian target of rapamycin pathways would delay the development of resistance in advanced renal cell carcinoma (aRCC). PATIENTS AND METHODS A single-arm, two-stage, multicentre, phase 2 trial to determine the activity, feasibility, and safety of 12-week cycles of sunitinib 50 mg daily 4 weeks on / 2 weeks off, alternating with everolimus 10 mg daily for 5 weeks on / 1 week off, until disease progression or prohibitive toxicity in favourable or intermediate-risk aRCC. The primary end point was proportion alive and progression-free at 6 months (PFS6m). The secondary end points were feasibility, tumour response, overall survival (OS), and adverse events (AEs). The correlative objective was to assess biomarkers and correlate with clinical outcome. RESULTS We recruited 55 eligible participants from September 2010 to August 2012. DEMOGRAPHICS mean age 61, 71% male, favourable risk 16%, intermediate risk 84%. Cycle 2 commenced within 14 weeks for 80% of participants; 64% received ≥22 weeks of alternating therapy; 78% received ≥22 weeks of any treatment. PFS6m was 29/55 (53%; 95% confidence interval [CI] 40% to 66%). Tumour response rate was 7/55 (13%; 95% CI 4% to 22%, all partial responses). After median follow-up of 20 months, 47 of 55 (86%) had progressed with a median progression-free survival of 8 months (95% CI 5-10), and 30 of 55 (55%) had died with a median OS of 17 months (95% CI 12-undefined). AEs were consistent with those expected for each single agent. No convincing prognostic biomarkers were identified. CONCLUSIONS The EVERSUN regimen was feasible and safe, but its activity did not meet pre-specified values to warrant further research. This supports the current approach of continuing anti-VEGF therapy until progression or prohibitive toxicity before changing treatment. AUSTRALIAN NEW ZEALAND CLINICAL TRIALS REGISTRY ACTRN12609000643279.


Scientific Reports | 2015

Establishing a panel of chemo-resistant mesothelioma models for investigating chemo-resistance and identifying new treatments for mesothelioma

Amanda L. Hudson; Chris Weir; Elizabeth Moon; Rozelle Harvie; Sonja Klebe; Stephen Clarke; Nick Pavlakis; Viive M. Howell

Mesothelioma is inherently chemo-resistant with only 50% of patients responding to the standard of care treatments, and consequently it has a very grim prognosis. The aim of this study was to establish a panel of chemo-resistant mesothelioma models with clinically relevant levels of resistance as tools for investigating chemo-resistance and identifying new treatments for mesothelioma. Chemo-resistant cell lines were established in vitro and characterized in vivo using syngeneic Fischer rats. Tumors derived from all chemo-resistant cell lines were immunohistochemically classified as mesothelioma. Homozygous deletion of p16INK4A/p14ARF and increased expression of several ATP-binding cassette transporters were demonstrated, consistent with findings in human mesothelioma. Further, the acquisition of chemo-resistance in vitro resulted in changes to tumor morphology and overall survival. In conclusion, these models display many features corresponding with the human disease, and provide the first series of matched parental and chemo-resistant models for in vitro and in vivo mesothelioma studies.


Ilar Journal | 2016

Transgenic Mouse Models of SV40-Induced Cancer

Amanda L. Hudson; Emily K. Colvin

The SV40 viral oncogene has been used since the 1970s as a reliable and reproducible method to generate transgenic mouse models. This seminal discovery has taught us an immense amount about how tumorigenesis occurs, and its success has led to the evolution of many mouse models of cancer. Despite the development of more modern and targeted approaches for developing genetically engineered mouse models of cancer, SV40-induced mouse models still remain frequently used today. This review discusses a number of cancer types in which SV40 mouse models of cancer have been developed and highlights their relevance and importance to preclinical research.


PLOS ONE | 2018

BAMLET kills chemotherapy-resistant mesothelioma cells, holding oleic acid in an activated cytotoxic state

Emma M. Rath; Yuen Yee Cheng; Mark Pinese; K. Sarun; Amanda L. Hudson; Christopher Weir; Yiwei Wang; Anders P. Hakansson; Viive M. Howell; Guo Jun Liu; Glen Reid; Robert Knott; Anthony P. Duff; W. Bret Church

Malignant pleural mesothelioma is an aggressive cancer with poor prognosis. Here we have investigated in vitro efficacy of BAMLET and BLAGLET complexes (anti-cancer complexes consisting of oleic acid and bovine α-lactalbumin or β-lactoglobulin respectively) in killing mesothelioma cells, determined BAMLET and BLAGLET structures, and investigated possible biological mechanisms. We performed cell viability assays on 16 mesothelioma cell lines. BAMLET and BLAGLET having increasing oleic acid content inhibited human and rat mesothelioma cell line proliferation at decreasing doses. Most of the non-cancer primary human fibroblasts were more resistant to BAMLET than were human mesothelioma cells. BAMLET showed similar cytotoxicity to cisplatin-resistant, pemetrexed-resistant, vinorelbine-resistant, and parental rat mesothelioma cells, indicating the BAMLET anti-cancer mechanism may be different to drugs currently used to treat mesothelioma. Cisplatin, pemetrexed, gemcitabine, vinorelbine, and BAMLET, did not demonstrate a therapeutic window for mesothelioma compared with immortalised non-cancer mesothelial cells. We demonstrated by quantitative PCR that ATP synthase is downregulated in mesothelioma cells in response to regular dosing with BAMLET. We sought structural insight for BAMLET and BLAGLET activity by performing small angle X-ray scattering, circular dichroism, and scanning electron microscopy. Our results indicate the structural mechanism by which BAMLET and BLAGLET achieve increased cytotoxicity by holding increasing amounts of oleic acid in an active cytotoxic state encapsulated in increasingly unfolded protein. Our structural studies revealed similarity in the molecular structure of the protein components of these two complexes and in their encapsulation of the fatty acid, and differences in the microscopic structure and structural stability. BAMLET forms rounded aggregates and BLAGLET forms long fibre-like aggregates whose aggregation is more stable than that of BAMLET due to intermolecular disulphide bonds. The results reported here indicate that BAMLET and BLAGLET may be effective second-line treatment options for mesothelioma.


Mammalian Genome | 2018

Radiation, inflammation and the immune response in cancer

Kelly McKelvey; Amanda L. Hudson; Michael Back; Tom Eade; Connie I. Diakos

Radiation is an important component of cancer treatment with more than half of all patients receive radiotherapy during their cancer experience. While the impact of radiation on tumour morphology is routinely examined in the pre-clinical and clinical setting, the impact of radiation on the tumour microenvironment and more specifically the inflammatory/immune response is less well characterised. Inflammation is a key contributor to short- and long-term cancer eradication, with significant tumour and normal tissue consequences. Therefore, the role of radiation in modulating the inflammatory response is highly topical given the current wave of targeted and immuno-therapeutic treatments for cancer. This review provides a general overview of how radiation modulates the inflammatory and immune response—(i) how radiation induces the inflammatory/immune system, (ii) the cellular changes that take place, (iii) how radiation dose delivery affects the immune response, and (iv) a discussion on research directions to improve patient survival, reduce side effects, improve quality of life, and reduce financial costs in the immediate future. Harnessing the benefits of radiation on the immune response will enhance its maximal therapeutic benefit and reduce radiation-induced toxicity.

Collaboration


Dive into the Amanda L. Hudson's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helen Wheeler

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Nick Pavlakis

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Rozelle Harvie

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sarah A. Hayes

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Martin

University of New South Wales

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Chris Weir

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Christopher Steer

University of New South Wales

View shared research outputs
Researchain Logo
Decentralizing Knowledge