Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Viive M. Howell is active.

Publication


Featured researches published by Viive M. Howell.


Journal of Medical Genetics | 2003

HRPT2 mutations are associated with malignancy in sporadic parathyroid tumours

Viive M. Howell; Carola J. Haven; Kahnoski K; Sok Kean Khoo; David Petillo; Jie Rong Chen; Gert Jan Fleuren; Bruce G. Robinson; Leigh Delbridge; Jeanette Philips; Anne E. Nelson; Ulf Krause; K Hammje; Henning Dralle; Cuong Hoang-Vu; Oliver Gimm; Deborah J. Marsh; H. Morreau; Bin Tean Teh

Background: Hyperparathyroidism is a common endocrinopathy characterised by the formation of parathyroid tumours. In this study, we determine the role of the recently identified gene, HRPT2, in parathyroid tumorigenesis. Methods: Mutation analysis of HRPT2 was undertaken in 60 parathyroid tumours: five HPT-JT, three FIHP, three MEN 1, one MEN 2A, 25 sporadic adenomas, 17 hyperplastic glands, two lithium associated tumours, and four sporadic carcinomas. Loss of heterozygosity at 1q24-32 was performed on a subset of these tumours. Results:HRPT2 somatic mutations were detected in four of four sporadic parathyroid carcinoma samples, and germline mutations were found in five of five HPT-JT parathyroid tumours (two families) and two parathyroid tumours from one FIHP family. One HPT-JT tumour with germline mutation also harboured a somatic mutation. In total, seven novel and one previously reported mutation were identified. “Two-hits” (double mutations or one mutation and loss of heterozygosity at 1q24-32) affecting HRPT2 were found in two sporadic carcinomas, two HPT-JT-related and two FIHP related tumours. Conclusions: The results in this study support the role of HRPT2 as a tumour suppressor gene in sporadic parathyroid carcinoma, and provide further evidence for HRPT2 as the causative gene in HPT-JT, and a subset of FIHP. In light of the strong association between mutations of HRPT2 and sporadic parathyroid carcinoma demonstrated in this study, it is hypothesised that HRPT2 mutation is an early event that may lead to parathyroid malignancy and suggest intragenic mutation of HRPT2 as a marker of malignant potential in both familial and sporadic parathyroid tumours.


The American Journal of Surgical Pathology | 2006

Loss of Nuclear Expression of Parafibromin Distinguishes Parathyroid Carcinomas and Hyperparathyroidism-Jaw Tumor (HPT-JT) Syndrome-related Adenomas From Sporadic Parathyroid Adenomas and Hyperplasias.

Anthony J. Gill; Adele Clarkson; Oliver Gimm; Juliane Keil; Henning Dralle; Viive M. Howell; Deborah J. Marsh

Parathyroid carcinoma is notoriously difficult to diagnose with confidence in borderline cases. Commonly there is a long lag time between diagnosis and clinical evidence of malignant behavior even in histopathologically straightforward lesions. There is therefore a need for a novel adjunctive marker to assist in the diagnosis of carcinoma. Parafibromin is the protein encoded by the putative tumor suppressor gene HRPT2. Mutations predicted to inactivate parafibromin were first detected in the germline of patients with hyperparathyroidism-jaw tumor (HPT-JT) syndrome. Subsequently, somatic mutations have been identified in the majority of sporadic carcinomas. We performed immunohistochemistry for parafibromin on 115 parathyroid tissues comprising 4 HPT-JT-related tumors (3 adenomas and 1 carcinoma), 11 sporadic parathyroid carcinomas, 79 sporadic adenomas, 3 multiple endocrine neoplasia 2A-related adenomas, 2 sporadic primary hyperplasias, 2 multiple endocrine neoplasia (MEN)-1–related hyperplasias, 6 secondary hyperplasias, 4 tertiary hyperplasias, and 4 normal parathyroid glands. There was complete absence of nuclear staining in 3 of 4 (75%) HPT-JT–related tumors and 8 of 11 (73%) sporadic parathyroid carcinomas and focal weak staining in 1 of 4 HPT-JT tumors and 2 of 11 sporadic parathyroid carcinomas. Only 1 parathyroid carcinoma exhibited diffuse strong nuclear expression of parafibromin. In contrast, 98 of 100 non-HPT-JT–related benign parathyroids showed diffuse strong nuclear positivity and 2 of 100 showed weak positive staining. We conclude that, in the correct clinical and pathologic context, complete absence of nuclear staining for parafibromin is diagnostic of parathyroid carcinoma or an HPT-JT–related tumor.


BMC Cancer | 2012

Elevated levels of circulating microRNA-200 family members correlate with serous epithelial ovarian cancer

Casina Ws Kan; Michael A Hahn; Gregory B. Gard; Jayne Maidens; Jung Yoon Huh; Deborah J. Marsh; Viive M. Howell

BackgroundThere is a critical need for improved diagnostic markers for high grade serous epithelial ovarian cancer (SEOC). MicroRNAs are stable in the circulation and may have utility as biomarkers of malignancy. We investigated whether levels of serum microRNA could discriminate women with high-grade SEOC from age matched healthy volunteers.MethodsTo identify microRNA of interest, microRNA expression profiling was performed on 4 SEOC cell lines and normal human ovarian surface epithelial cells. Total RNA was extracted from 500 μL aliquots of serum collected from patients with SEOC (n = 28) and age-matched healthy donors (n = 28). Serum microRNA levels were assessed by quantitative RT-PCR following preamplification.ResultsmicroRNA (miR)-182, miR-200a, miR-200b and miR-200c were highly overexpressed in the SEOC cell lines relative to normal human ovarian surface epithelial cells and were assessed in RNA extracted from serum as candidate biomarkers. miR-103, miR-92a and miR -638 had relatively invariant expression across all ovarian cell lines, and with small-nucleolar C/D box 48 (RNU48) were assessed in RNA extracted from serum as candidate endogenous normalizers. No correlation between serum levels and age were observed (age range 30-79 years) for any of these microRNA or RNU48. Individually, miR-200a, miR-200b and miR-200c normalized to serum volume and miR-103 were significantly higher in serum of the SEOC cohort (P < 0.05; 0.05; 0.0005 respectively) and in combination, miR-200b + miR-200c normalized to serum volume and miR-103 was the best predictive classifier of SEOC (ROC-AUC = 0.784). This predictive model (miR-200b + miR-200c) was further confirmed by leave one out cross validation (AUC = 0.784).ConclusionsWe identified serum microRNAs able to discriminate patients with high grade SEOC from age-matched healthy controls. The addition of these microRNAs to current testing regimes may improve diagnosis for women with SEOC.


Cancer Research | 2004

Gene expression of parathyroid tumors: Molecular subclassification and identification of the potential malignant phenotype

Carola J. Haven; Viive M. Howell; Paul H. C. Eilers; Robert Dunne; Masayuki Takahashi; Marjo van Puijenbroek; Kyle A. Furge; Job Kievit; Min-Han Tan; Gert Jan Fleuren; Bruce G. Robinson; Leigh Delbridge; Jeanette Philips; Anne E. Nelson; Ulf Krause; Henning Dralle; Cuong Hoang-Vu; Oliver Gimm; Hans Morreau; Deborah J. Marsh; Bin Tean Teh

Parathyroid tumors are heterogeneous, and diagnosis is often difficult using histologic and clinical features. We have undertaken expression profiling of 53 hereditary and sporadic parathyroid tumors to better define the molecular genetics of parathyroid tumors. A class discovery approach identified three distinct groups: (1) predominantly hyperplasia cluster, (2) HRPT2/carcinoma cluster consisting of sporadic carcinomas and benign and malignant tumors from Hyperparathyroidism-Jaw Tumor Syndrome patients, and (3) adenoma cluster consisting mainly of primary adenoma and MEN 1 tumors. Gene sets able to distinguish between the groups were identified and may serve as diagnostic biomarkers. We demonstrated, by both gene and protein expression, that Histone 1 Family 2, amyloid β precursor protein, and E-cadherin are useful markers for parathyroid carcinoma and suggest that the presence of a HRPT2 mutation, whether germ-line or somatic, strongly influences the expression pattern of these 3 genes. Cluster 2, characterized by HRPT2 mutations, was the most striking, suggesting that parathyroid tumors with somatic HRPT2 mutation or tumors developing on a background of germ-line HRPT2 mutation follow pathways distinct from those involved in mutant MEN 1-related parathyroid tumors. Furthermore, our findings likely preclude an adenoma to carcinoma progression model for parathyroid tumorigenesis outside of the presence of either a germ-line or somatic HRPT2 mutation. These findings provide insights into the molecular pathways involved in parathyroid tumorigenesis and will contribute to a better understanding, diagnosis, and treatment of parathyroid tumors.


The Journal of Clinical Endocrinology and Metabolism | 2009

Accuracy of Combined Protein Gene Product 9.5 and Parafibromin Markers for Immunohistochemical Diagnosis of Parathyroid Carcinoma

Viive M. Howell; Anthony J. Gill; Adele Clarkson; Anne E. Nelson; Robert Dunne; Leigh Delbridge; Bruce G. Robinson; Bin Tean Teh; Oliver Gimm; Deborah J. Marsh

CONTEXT Parafibromin, encoded by HRPT2, is the first marker with significant benefit in the diagnosis of parathyroid carcinoma. However, because parafibromin is only involved in up to 70% of parathyroid carcinomas and loss of parafibromin immunoreactivity may not be observed in all cases of HRPT2 mutation, a complementary marker is needed. OBJECTIVE We sought to determine the efficacy of increased expression of protein gene product 9.5 (PGP9.5), encoded by ubiquitin carboxyl-terminal esterase L1 (UCHL1) as an additional marker to loss of parafibromin immunoreactivity for the diagnosis of parathyroid carcinoma. DESIGN In total, 146 parathyroid tumors and nine normal tissues were analyzed for the expression of parafibromin and PGP9.5 by immunohistochemistry and for UCHL1 by quantitative RT-PCR. These samples included six hyperparathyroidism-jaw tumor syndrome-related tumors and 24 sporadic carcinomas. RESULTS In tumors with evidence of malignancy, strong staining for PGP9.5 had a sensitivity of 78% for the detection of parathyroid carcinoma and/or HRPT2 mutation and a specificity of 100%. Complete lack of nuclear parafibromin staining had a sensitivity of 67% and a specificity of 100%. PGP9.5 was positive in a tumor with the HRPT2 mutation L64P that expressed parafibromin. Furthermore, UCHL1 was highly expressed in the carcinoma/hyperparathyroidism-jaw tumor syndrome group compared to normal (P < 0.05) and benign specimens (P < 0.001). CONCLUSION These results suggest that positive staining for PGP9.5 has utility as a marker for parathyroid malignancy, with a slightly superior sensitivity (P = 0.03) and similar high specificity to that of parafibromin.


Frontiers in Oncology | 2015

Molecular heterogeneity in glioblastoma: potential clinical implications.

Nicole R. Parker; Peter Khong; Jonathon F. Parkinson; Viive M. Howell; Helen Wheeler

Glioblastomas, (grade 4 astrocytomas), are aggressive primary brain tumors characterized by histopathological heterogeneity. High-resolution sequencing technologies have shown that these tumors also feature significant inter-tumoral molecular heterogeneity. Molecular subtyping of these tumors has revealed several predictive and prognostic biomarkers. However, intra-tumoral heterogeneity may undermine the use of single biopsy analysis for determining tumor genotype and has implications for potential targeted therapies. The clinical relevance and theories of tumoral molecular heterogeneity in glioblastoma are discussed.


Journal of Medical Genetics | 2003

A genetic screening programme for Tay-Sachs disease and cystic fibrosis for Australian Jewish high school students

Kristine Barlow-Stewart; Leslie Burnett; Anne Proos; Viive M. Howell; F Huq; R Lazarus; H Aizenberg

Australia has a Jewish population of about 90 000, mostly living in metropolitan Sydney or Melbourne and most are of Ashkenazi (northern and central Europe) Jewish origin.1 While community genetic carrier testing programmes for Tay-Sachs disease (TSD) have been established since 1970 and are now operating in various forms in 15 countries,2–4 before 1993 in Australia all TSD laboratory testing was only available through a medical consultation service. Following a two year pilot study,1 the Tay-Sachs Disease Programme (TSDP), organised by the Australasian Community Genetics Programme (ACGP), was established in 1995. Knowledge of genetic carrier status allows people an accurate assessment of their risks for having children with conditions such as TSD, enabling at risk couples the opportunity to explore their reproductive options, which may include prenatal testing, adoption, sperm or egg donation, and more recently preimplantation genetic diagnosis.2,5 While decision making in this area is optimally made before pregnancy, there are enormous difficulties in informing those of reproductive age of the availability of genetic carrier testing and its relevance.5 The ideal age for population screening for autosomal recessive diseases (such as TSD) is therefore early in adulthood, when young people can make mature decisions about testing6 based on information provided in a forum that enables discussion and debate. The high school environment provides that opportunity and it has been successfully shown in Montreal by Mitchell et al 7 that screening for genetic carriers for TSD (1973–1992) and β-thalassaemia (1980–1992) can be undertaken over a 20 year period without apparent psychological or sociological harm. As a result, in their study, practically all women in Montreal who were referred for prenatal diagnosis of β-thalassaemia major or TSD had undergone screening in high school. The benefits include enabling informed reproductive choices to be made …


Scientific Reports | 2016

Intratumoral heterogeneity identified at the epigenetic, genetic and transcriptional level in glioblastoma.

Nicole R. Parker; Amanda L. Hudson; Peter Khong; Jonathon F. Parkinson; Trisha Dwight; Rowan J. Ikin; Ying Zhu; Zhangkai Jason Cheng; Fatemeh Vafaee; Jason J. Chen; Helen Wheeler; Viive M. Howell

Heterogeneity is a hallmark of glioblastoma with intratumoral heterogeneity contributing to variability in responses and resistance to standard treatments. Promoter methylation status of the DNA repair enzyme O6-methylguanine DNA methyltransferase (MGMT) is the most important clinical biomarker in glioblastoma, predicting for therapeutic response. However, it does not always correlate with response. This may be due to intratumoral heterogeneity, with a single biopsy unlikely to represent the entire lesion. Aberrations in other DNA repair mechanisms may also contribute. This study investigated intratumoral heterogeneity in multiple glioblastoma tumors with a particular focus on the DNA repair pathways. Transcriptional intratumoral heterogeneity was identified in 40% of cases with variability in MGMT methylation status found in 14% of cases. As well as identifying intratumoral heterogeneity at the transcriptional and epigenetic levels, targeted next generation sequencing identified between 1 and 37 unique sequence variants per specimen. In-silico tools were then able to identify deleterious variants in both the base excision repair and the mismatch repair pathways that may contribute to therapeutic response. As these pathways have roles in temozolomide response, these findings may confound patient management and highlight the importance of assessing multiple tumor biopsies.


Hypertension | 2012

Low-Dose Spironolactone Prevents Apoptosis Repressor With Caspase Recruitment Domain Degradation During Myocardial Infarction

Thi Yen Loan Le; Mahidi Mardini; Viive M. Howell; John W. Funder; Anthony W. Ashton; Anastasia S. Mihailidou

Low-dose mineralocorticoid receptor antagonists reduce morbidity and mortality in patients with heart failure and myocardial infarction, despite normal plasma aldosterone levels. Since apoptosis plays an important role in heart failure and postinfarction left ventricular remodeling, we examined whether low-dose mineralocorticoid receptor antagonists modulate cardiomyocyte death by regulating the apoptosis repressor protein apoptosis repressor with caspase recruitment domain to lessen the extent of apoptosis. Hearts from adult male Sprague-Dawley rats were subjected to regional ischemia followed by reperfusion ex vivo, with mineralocorticoid receptor antagonists added to perfusates before ischemia. Low-dose spironolactone (10 nmol/L) or eplerenone (100 nmol/L) significantly reduced infarct size. Spironolactone also prevented cleavage of the apoptotic chromatin condensation inducer in the nucleus and of the inhibitor of caspase-activated DNAse induced by ischemia-reperfusion, thereby abolishing chromatin condensation and internucleosomal cleavage. Ischemia-reperfusion–induced activation of caspases 2, 3, and 9, but not caspase 8, was prevented by spironolactone, suggesting targeted regulation of the intrinsic pathway. Low-dose spironolactone and eplerenone prevented loss of the apoptosis repressor with the caspase recruitment domain and reduced myocyte death. In H9c2 cells, mineralocorticoid receptor activation by aldosterone resulted in apoptosis repressor with caspase recruitment domain degradation and enhanced apoptosis; these actions were prevented by coadministration of spironolactone. Using a triple lysine mutant we identified that aldosterone enhances posttranscriptional degradation of the apoptosis repressor with a caspase recruitment domain via the ubiquitin-proteasomal pathway. Our data demonstrate that low-dose mineralocorticoid receptor antagonists reduce infarct size and apoptosis in the reperfused myocardium by preventing the apoptosis repressor with caspase recruitment domain degradation.


Cancer Letters | 2012

Sleeping Beauty - A mouse model for all cancers?

Viive M. Howell

Sleeping Beauty (SB) is a genetically engineered insertional mutagenesis system. Its ability to rapidly induce cancer in SB-transgenic mice as well as the ease of identification of the mutated genes suggest important roles for SB in the discovery of novel cancer genes as well as the generation of models of human cancers where none currently exist. The range of SB-related tumors extends from haematopoietic to solid cancers such as hepatocellular carcinoma. This review follows the refinement of SB for different cancers and assesses its potential as a model for all cancers and a tool for cancer gene discovery.

Collaboration


Dive into the Viive M. Howell's collaboration.

Top Co-Authors

Avatar

Deborah J. Marsh

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen Clarke

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Anthony J. Gill

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Nick Pavlakis

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Sarah A. Hayes

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar

Helen Wheeler

Royal North Shore Hospital

View shared research outputs
Top Co-Authors

Avatar

Bruce G. Robinson

Kolling Institute of Medical Research

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge