Amara Luckay
Tulane University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amara Luckay.
Cell | 2001
Nina F. Rose; Preston A. Marx; Amara Luckay; Douglas F. Nixon; Walter J. Moretto; Sean M. Donahoe; David C. Montefiori; Anjeanette Roberts; Linda Buonocore; John K. Rose
We developed an AIDS vaccine based on attenuated VSV vectors expressing env and gag genes and tested it in rhesus monkeys. Boosting was accomplished using vectors with glycoproteins from different VSV serotypes. Animals were challenged with a pathogenic AIDS virus (SHIV89.6P). Control monkeys showed a severe loss of CD4+ T cells and high viral loads, and 7/8 progressed to AIDS with an average time of 148 days. All seven vaccinees were initially infected with SHIV89.6P but have remained healthy for up to 14 months after challenge with low or undetectable viral loads. Protection from AIDS was highly significant (p = 0.001). VSV vectors are promising candidates for human AIDS vaccine trials because they propagate to high titers and can be delivered without injection.
Journal of Virology | 2007
Amara Luckay; Maninder K. Sidhu; Rune Kjeken; Shakuntala Megati; Siew-Yen Chong; Vidia Roopchand; Dorys Garcia-Hand; Rashed Abdullah; Ralph P. Braun; David C. Montefiori; Margherita Rosati; Barbara K. Felber; George N. Pavlakis; Iacob Mathiesen; Zimra R. Israel; John H. Eldridge; Michael A. Egan
ABSTRACT Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log10 increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
AIDS | 2002
Binhua Ling; Ronald S. Veazey; Amara Luckay; Cecilia Penedo; Keyu Xu; Jeffrey D. Lifson; Preston A. Marx
ObjectiveTo develop a SIV–rhesus macaque (Rh) model of AIDS that more closely approximates HIV pathogenesis in humans. DesignThe pathogenesis of SIV was compared in two different types of Rh, the Chinese (Ch) and Indian (Ind) subspecies. MethodsCh Rh and Ind Rh origin were identified genetically and infected with the SIVmac239 molecular clone. Plasma viral loads, depletion of intestinal lymphocytes with memory phenotype, humoral immune responses and CD4/CD8 cell ratios were compared during acute and steady-state periods of infection. ResultsPlasma viral loads from 7 days after infection through 240 days were significantly lower in Rh of Ch origin compared with Ind Rh. Viral loads in Ch Rh were closer to viral loads observed in untreated humans infected with HIV-1. Depletion of intestinal effector cells was less evident in SIV-infected Ch Rh compared with Ind Rh. An index of intestinal pathogenesis was devised that closely paralleled viral load and severity of infection. There were no rapid progressors to AIDS among 10 Ch Rh. In contrast, three of four Ind Rh progressed rapidly to AIDS. ConclusionsCompared with Ind Rh, SIVmac pathogenesis in Ch Rh was closer to HIV-1 infections in untreated adult humans. The differences were statistically significant. The Ch Rh subspecies is a suitable AIDS model and may have advantages over the rapid and highly pathogenic Ind Rh model. Moreover, Ind Rh supplies are limited and use of Ch Rh provides a new resource.
Journal of Virology | 2000
Lisa A. Chakrabarti; Sharon R. Lewin; Linqi Zhang; Agegnehu Gettie; Amara Luckay; Louis N. Martin; Eva Skulsky; David D. Ho; Cecilia Cheng-Mayer; Preston A. Marx
ABSTRACT Sooty mangabeys naturally infected with simian immunodeficiency virus (SIV) remain healthy though they harbor viral loads comparable to those in rhesus macaques that progress to AIDS. To assess the immunologic basis of disease resistance in mangabeys, we compared the effect of SIV infection on T-cell regeneration in both monkey species. Measurement of the proliferation marker Ki-67 by flow cytometry showed that mangabeys harbored proliferating T cells at a level of 3 to 4% in peripheral blood irrespective of their infection status. In contrast, rhesus macaques demonstrated a naturally high fraction of proliferating T cells (7%) that increased two- to threefold following SIV infection. Ki-67+ T cells were predominantly CD45RA−, indicating increased proliferation of memory cells in macaques. Quantitation of an episomal DNA product of T-cell receptor α rearrangement (termed α1 circle) showed that the concentration of recent thymic emigrants in blood decreased with age over a 2-log unit range in both monkey species, consistent with age-related thymic involution. SIV infection caused a limited decrease of α1 circle numbers in mangabeys as well as in macaques. Dilution of α1 circles by T-cell proliferation likely contributed to this decrease, since α1 circle numbers and Ki-67+ fractions correlated negatively. These findings are compatible with immune exhaustion mediated by abnormal T-cell proliferation, rather than with early thymic failure, in SIV-infected macaques. Normal T-cell turnover in SIV-infected mangabeys provides an explanation for the long-term maintenance of a functional immune system in these hosts.
Vaccine | 2008
Rong Xu; Shakuntala Megati; Vidia Roopchand; Amara Luckay; Amjed Masood; Dorys Garcia-Hand; Margherita Rosati; David B. Weiner; Barbara K. Felber; George N. Pavlakis; Maninder K. Sidhu; John H. Eldridge; Michael A. Egan
The effectiveness of plasmid DNA (pDNA) vaccines can be improved by the co-delivery of plasmid-encoded molecular adjuvants. We evaluated pDNAs encoding GM-CSF, Flt-3L, IL-12 alone, or in combination, for their relative ability to serve as adjuvants to augment humoral and cell-mediated immune responses elicited by prototype pDNA vaccines. In Balb/c mice we found that co-administration of plasmid-based murine GM-CSF (pmGM-CSF), murine Flt-3L (pmFlt-3L) or murine IL-12 (pmIL-12) could markedly enhance the cell-mediated immune response elicited by an HIV-1 env pDNA vaccine. Plasmid mGM-CSF also augmented the immune response elicited by DNA vaccines expressing HIV-1 Gag and Nef-Tat-Vif. In addition, the use of pmGM-CSF as a vaccine adjuvant appeared to markedly increase antigen-specific proliferative responses and improved the quality of the resulting T-cell response by increasing the percentage of polyfunctional memory CD8(+) T cells. Co-delivery of pmFlt-3L with pmGM-CSF did not result in a further increase in adjuvant activity. However, the co-administration of pmGM-CSF with pmIL-12 did significantly enhance env-specific proliferative responses and vaccine efficacy in the murine vaccinia virus challenge model relative to mice immunized with the env pDNA vaccine adjuvanted with either pmGM-CSF or pmIL-12 alone. These data support the testing of pmGM-CSF and pmIL-12, used alone or in combination, as plasmid DNA vaccine adjuvants in future macaque challenge studies.
Journal of Medical Primatology | 2003
Lisa A. Chakrabarti; Sharon R. Lewin; Linqi Zhang; Agegnehu Gettie; Amara Luckay; Louis N. Martin; Eva Skulsky; David D. Ho; Cecilia Cheng-Mayer; Preston A. Marx
Sooty mangabeys (Cercocebus atys) showed age‐dependent changes in T cell regeneration. Younger animals had a high percentage of CD4+ CD45RA+ T cells and a high concentration of T cell receptor excisional circles (TRECs) in peripheral blood, which indicated active thymopoiesis. In contrast, older animals had an increased T cell turnover, which suggested that most T cell production occurred in the periphery. In addition, the number of peripheral CD4+ T cells naturally decreased with age. Non‐pathogenic SIVsm infection did not significantly change the T cell proliferation rate or the TREC concentration, though it did cause a moderate loss of peripheral CD4+ T cells. The viral load correlated negatively with age, which could be accounted for by the reduced availability of CD4+ target cells in older mangabeys. Thus, the number of susceptible target cells may be a limiting factor in natural SIV infection.
Journal of Virology | 2002
Ralf Ignatius; Klara Tenner-Racz; Davorka Messmer; Agegnehu Gettie; James F. Blanchard; Amara Luckay; Christine Russo; Stephen M. Smith; Preston A. Marx; Ralph M. Steinman; Paul Racz; Melissa Pope
ABSTRACT Information on the establishment of immunodeficiency virus infection through transmission of infected cells is sparse. Dendritic cells (DCs) and T cells may be central to the onset and subsequent spread of infection following mucosal exposure. To directly investigate the consequences of virus being introduced by DCs or T cells, we reinjected ex vivo simian immunodeficiency virus (SIV)-loaded autologous immature DCs and T cells subcutaneously (s.c.) into healthy macaques. s.c. injection of cell-bound virus was used to mirror what may happen if virus-loaded cells pass through an epithelium or perhaps DCs and T cells that immediately entrap cell-free virus, having just crossed an epithelial barrier. Virus load in the plasma was monitored along with combined in situ hybridization and immunohistochemistry to identify the cells replicating virus in the lymphoid tissues. Both DCs and T cells transmitted infection after being pulsed with either wild-type or nef-defective (delta nef) SIVmac239. As seen in animals infected intravenously, replication of delta nef was attenuated compared to that of wild-type virus when introduced in either cell-bound form. Upon examination of the draining lymph nodes (LNs) during the first days of infection, virus-producing CD4+ T cells predominated in control animals that received s.c. cell-free virus. In dramatic contrast, both SIV-positive macrophages and T cells were detected in the LNs of monkeys infected with cell-associated SIV. Therefore, although both cell-free and cell-associated viruses are infectious, the initial cells amplifying the virus differ. This may have important implications for the subsequent dissemination of infection and/or induction of antiretroviral immunity.
Journal of Virology | 2014
David K. Clarke; Farooq Nasar; Siew yen Chong; J. Erik Johnson; John W. Coleman; Margaret Lee; Susan E. Witko; Cheryl S. Kotash; Rashed Abdullah; Shakuntala Megati; Amara Luckay; Becky Nowak; Andrew A. Lackner; Roger E. Price; Peter B. Little; Valerie Randolf; Ali Javadian; Timothy J. Zamb; Christopher L. Parks; Michael A. Egan; John H. Eldridge; Michael Hendry; Stephen A. Udem
ABSTRACT In previous work, a prototypic recombinant vesicular stomatitis virus Indiana serotype (rVSIV) vector expressing simian immunodeficiency virus (SIV) gag and human immunodeficiency virus type 1 (HIV-1) env antigens protected nonhuman primates (NHPs) from disease following challenge with an HIV-1/SIV recombinant (SHIV). However, when tested in a stringent NHP neurovirulence (NV) model, this vector was not adequately attenuated for clinical evaluation. For the work described here, the prototypic rVSIV vector was attenuated by combining specific G protein truncations with either N gene translocations or mutations (M33A and M51A) that ablate expression of subgenic M polypeptides, by incorporation of temperature-sensitive mutations in the N and L genes, and by deletion of the VSIV G gene to generate a replicon that is dependent on trans expression of G protein for in vitro propagation. When evaluated in a series of NHP NV studies, these attenuated rVSIV variants caused no clinical disease and demonstrated a very significant reduction in neuropathology compared to wild-type VSIV and the prototypic rVSIV vaccine vector. In spite of greatly increased in vivo attenuation, some of the rVSIV vectors elicited cell-mediated immune responses that were similar in magnitude to those induced by the much more virulent prototypic vector. These data demonstrate novel approaches to the rational attenuation of VSIV NV while retaining vector immunogenicity and have led to identification of an rVSIV N4CT1gag1 vaccine vector that has now successfully completed phase I clinical evaluation. IMPORTANCE The work described in this article demonstrates a rational approach to the attenuation of vesicular stomatitis virus neurovirulence. The major attenuation strategy described here will be most likely applicable to other members of the Rhabdoviridae and possibly other families of nonsegmented negative-strand RNA viruses. These studies have also enabled the identification of an attenuated, replication-competent rVSIV vector that has successfully undergone its first clinical evaluation in humans. Therefore, these studies represent a major milestone in the development of attenuated rVSIV, and likely other vesiculoviruses, as a new vaccine platform(s) for use in humans.
Vaccine | 2008
Shakuntala Megati; Dorys Garcia-Hand; Sarah Cappello; Vidia Roopchand; Amjed Masood; Rong Xu; Amara Luckay; Siew-Yen Chong; Margherita Rosati; Solomon Sackitey; David B. Weiner; Barbara K. Felber; George N. Pavlakis; Zimra R. Israel; Larry R. Smith; John H. Eldridge; Maninder K. Sidhu; Michael A. Egan
Plasmid DNA (pDNA) vaccines are effective at eliciting immune responses in a wide variety of animal model systems, however, pDNA vaccines have generally been incapable of inducing robust immune responses in clinical trials. Therefore, to identify means to improve pDNA vaccine performance, we compared various post-transcriptional and post-translational genetic modifications for their ability to improve antigen-specific CMI responses. Mice vaccinated using a sub-optimal 100 mcg dose of a pDNA encoding an unmodified primary isolate HIV-1(6101) env gp160 failed to demonstrate measurable env-specific CMI responses. In contrast, significant env-specific CMI responses were seen in mice immunized with pDNA expression vectors encoding env genes modified by RNA optimization or codon optimization. Further modification of the RNA optimized env gp160 gene by the addition of (i) a simian retrovirus type 1 constitutive RNA transport element; (ii) a murine intracisternal A-particle derived RNA transport element; (iii) a tissue plasminogen activator protein signal leader sequences; (iv) a beta-catenin derived ubiquitination target sequence; or (v) a monocyte chemotactic protein-3 derived signal sequence failed to further improve the induction of env-specific CMI responses. Therefore, modification of the env gp160 gene by RNA or codon optimization alone is necessary for high-level rev-independent expression and results in robust env-specific CMI responses in immunized mice. Importantly, further modification(s) of the env gene to alter cellular localization or increase proteolytic processing failed to result in increased env-specific immune responses. These results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.
Journal of Virology | 2009
Rong Xu; Farooq Nasar; Shakuntala Megati; Amara Luckay; Margaret Lee; Stephen A. Udem; John H. Eldridge; Michael A. Egan; E. Emini; David K. Clarke
ABSTRACT Intramuscular inoculation of rhesus macaques with one or more doses of recombinant vesicular stomatitis virus (rVSV) expressing human immunodeficiency virus type 1 (HIV-1) Gag (rVSVgag) typically elicits peak cellular immune responses of 500 to 1,000 gamma interferon (IFN-γ) enzyme-linked immunospots (ELISPOTS)/106 peripheral blood lymphocytes (PBL). Here, we describe the generation of a novel recombinant mumps virus (rMuV) expressing HIV-1 Gag (rMuVgag) and measure the Gag-specific cellular immune responses detected in rhesus macaques following vaccination with a highly attenuated form of rVSV expressing HIV-1 Gag (rVSVN4CT1gag1) and rMuVgag in various prime-boost combinations. Notably, peak Gag-specific cellular immune responses of 3,000 to 3,500 ELISPOTS/106 PBL were detected in macaques that were primed with rMuVgag and boosted with rVSVN4CT1gag1. Lower peak cellular immune responses were detected in macaques that were primed with rVSVN4CT1gag1 and boosted with rMuVgag, although longer-term gag-specific responses appeared to remain higher in this group of macaques. These findings indicate that rMuVgag may significantly enhance Gag-specific cellular immune responses when administered with rVSVN4CT1gag1 in heterologous prime-boost regimens.