Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Barbara K. Felber is active.

Publication


Featured researches published by Barbara K. Felber.


Journal of Virology | 2007

Effect of Plasmid DNA Vaccine Design and In Vivo Electroporation on the Resulting Vaccine-Specific Immune Responses in Rhesus Macaques

Amara Luckay; Maninder K. Sidhu; Rune Kjeken; Shakuntala Megati; Siew-Yen Chong; Vidia Roopchand; Dorys Garcia-Hand; Rashed Abdullah; Ralph P. Braun; David C. Montefiori; Margherita Rosati; Barbara K. Felber; George N. Pavlakis; Iacob Mathiesen; Zimra R. Israel; John H. Eldridge; Michael A. Egan

ABSTRACT Since human immunodeficiency virus (HIV)-specific cell-mediated immune (CMI) responses are critical in the early control and resolution of HIV infection and correlate with postchallenge outcomes in rhesus macaque challenge experiments, we sought to identify a plasmid DNA (pDNA) vaccine design capable of eliciting robust and balanced CMI responses to multiple HIV type 1 (HIV-1)-derived antigens for further development. Previously, a number of two-, three-, and four-vector pDNA vaccine designs were identified as capable of eliciting HIV-1 antigen-specific CMI responses in mice (M. A. Egan et al., Vaccine 24:4510-4523, 2006). We then sought to further characterize the relative immunogenicities of these two-, three-, and four-vector pDNA vaccine designs in nonhuman primates and to determine the extent to which in vivo electroporation (EP) could improve the resulting immune responses. The results indicated that a two-vector pDNA vaccine design elicited the most robust and balanced CMI response. In addition, vaccination in combination with in vivo EP led to a more rapid onset and enhanced vaccine-specific immune responses. In macaques immunized in combination with in vivo EP, we observed a 10- to 40-fold increase in HIV-specific enzyme-linked immunospot assay responses compared to those for macaques receiving a 5-fold higher dose of vaccine without in vivo EP. This increase in CMI responses translates to an apparent 50- to 200-fold increase in pDNA vaccine potency. Importantly, in vivo EP enhanced the immune response against the less immunogenic antigens, resulting in a more balanced immune response. In addition, in vivo EP resulted in an approximate 2.5-log10 increase in antibody responses. The results further indicated that in vivo EP was associated with a significant reduction in pDNA persistence and did not result in an increase in pDNA associated with high-molecular-weight DNA relative to macaques receiving the pDNA without EP. Collectively, these results have important implications for the design and development of an efficacious vaccine for the prevention of HIV-1 infection.


Nature Medicine | 2010

Mosaic vaccines elicit CD8 + T lymphocyte responses that confer enhanced immune coverage of diverse HIV strains in monkeys

Sampa Santra; Hua-Xin Liao; Ruijin Zhang; Mark Muldoon; Sydeaka Watson; Will Fischer; James Theiler; James Szinger; Harikrishnan Balachandran; Adam P. Buzby; David S. Quinn; Robert Parks; Chun-Yen Tsao; Angela Carville; Keith G. Mansfield; George N. Pavlakis; Barbara K. Felber; Barton F. Haynes; Bette T. Korber; Norman L. Letvin

An effective HIV vaccine must elicit immune responses that recognize genetically diverse viruses. It must generate CD8+ T lymphocytes that control HIV replication and CD4+ T lymphocytes that provide help for the generation and maintenance of both cellular and humoral immune responses against the virus. Creating immunogens that can elicit cellular immune responses against the genetically varied circulating isolates of HIV presents a key challenge for creating an HIV vaccine. Polyvalent mosaic immunogens derived by in silico recombination of natural strains of HIV are designed to induce cellular immune responses that recognize genetically diverse circulating virus isolates. Here we immunized rhesus monkeys by plasmid DNA prime and recombinant vaccinia virus boost with vaccine constructs expressing either consensus or polyvalent mosaic proteins. As compared to consensus immunogens, the mosaic immunogens elicited CD8+ T lymphocyte responses to more epitopes of each viral protein than did the consensus immunogens and to more variant sequences of CD8+ T lymphocyte epitopes. This increased breadth and depth of epitope recognition may contribute both to protection against infection by genetically diverse viruses and to the control of variant viruses that emerge as they mutate away from recognition by cytotoxic T lymphocytes.


Journal of Immunology | 2005

Coimmunization with an Optimized IL-15 Plasmid Results in Enhanced Function and Longevity of CD8 T Cells That Are Partially Independent of CD4 T Cell Help

Michele Kutzler; Tara M. Robinson; Michael A. Chattergoon; Daniel K. Choo; Andrew Y. Choo; Philip Y. Choe; Mathura P. Ramanathan; Rose Parkinson; Sagar Kudchodkar; Yutaka Tamura; Maninder K. Sidhu; Vidia Roopchand; J. Joseph Kim; George N. Pavlakis; Barbara K. Felber; Thomas A. Waldmann; Jean D. Boyer; David B. Weiner

DNA vaccines are a promising technology for the induction of Ag-specific immune responses, and much recent attention has gone into improving their immune potency. In this study we test the feasibility of delivering a plasmid encoding IL-15 as a DNA vaccine adjuvant for the induction of improved Ag-specific CD8+ T cellular immune responses. Because native IL-15 is poorly expressed, we used PCR-based strategies to develop an optimized construct that expresses 80-fold higher than the native IL-15 construct. Using a DNA vaccination model, we determined that immunization with optimized IL-15 in combination with HIV-1gag DNA constructs resulted in a significant enhancement of Ag-specific CD8+ T cell proliferation and IFN-γ secretion, and strong induction of long-lived CD8+ T cell responses. In an influenza DNA vaccine model, coimmunization with plasmid expressing influenza A PR8/34 hemagglutinin with the optimized IL-15 plasmid generated improved long term CD8+ T cellular immunity and protected the mice against a lethal mucosal challenge with influenza virus. Because we observed that IL-15 appeared to mostly adjuvant CD8+ T cell function, we show that in the partial, but not total, absence of CD4+ T cell help, plasmid-delivered IL-15 could restore CD8 secondary immune responses to an antigenic DNA plasmid, supporting the idea that the effects of IL-15 on CD8+ T cell expansion require the presence of low levels of CD4 T cells. These data suggest a role for enhanced plasmid IL-15 as a candidate adjuvant for vaccine or immunotherapeutic studies.


Molecular and Cellular Biology | 1992

The Rev protein of human immunodeficiency virus type 1 promotes polysomal association and translation of gag/pol and vpu/env mRNAs.

D M D'Agostino; Barbara K. Felber; J E Harrison; George N. Pavlakis

Biochemical examination of the Rev-dependent expression of gag mRNAs produced from gag-Rev-responsive element (RRE) expression plasmids showed a large discrepancy between the level of cytoplasmic gag mRNA and the produced Gag protein. Significant levels of the mRNA produced in the absence of Rev were localized in the cytoplasm, while very low levels of Gag protein were produced. In the presence of Rev, the levels of mRNA increased by 4- to 16-fold, while the Gag protein production increased by 800-fold. These findings indicated that in addition to promoting nucleus-to-cytoplasm transport, Rev increased the utilization of cytoplasmic viral mRNA. Poly(A) selection and in vitro translation of cytoplasmic gag mRNA verified that the mRNA produced in the absence of Rev was functional. To analyze the translational defect in the absence of Rev, we examined the association of the cytoplasmic gag mRNA with ribosomes. gag mRNA produced in the absence of Rev was excluded from polysomes, while gag mRNA produced in the presence of Rev was associated with polysomes and produced Gag protein. These observations showed that the presence of Rev was required for efficient loading of gag mRNA onto polysomes. This effect required the presence of the RRE on the mRNA. Analysis of mRNAs produced from a rev-minus proviral clone confirmed that the presence of Rev promoted polysomal loading of both gag/pol and vpu/env mRNAs. The localization of gag mRNA was also examined by in situ hybridization. This analysis showed that in the presence of Rev, most of the gag mRNA was found in the cytoplasm, while in the absence of Rev, most of the gag mRNA was found in the nucleus and in the region surrounding the nucleus. These results suggest that a substantial fraction of the gag mRNA is retained in distinct cytoplasmic compartments in the absence and presence of Rev. These findings indicate that the presence of Rev is required along the entire mRNA transport and utilization pathway for the stabilization, correct localization, and efficient translation of RRE-containing mRNAs.


Journal of Immunology | 2002

Containment of Simian Immunodeficiency Virus Infection in Vaccinated Macaques: Correlation with the Magnitude of Virus-Specific Pre- and Postchallenge CD4+ and CD8+ T Cell Responses

Zdenek Hel; Janos Nacsa; Elzbieta Tryniszewska; Wen-Po Tsai; Robyn Washington Parks; David C. Montefiori; Barbara K. Felber; James Tartaglia; George N. Pavlakis; Genoveffa Franchini

Macaques infected with the SIV strain SIVmac251 develop a disease closely resembling human AIDS characterized by high viremia, progressive loss of CD4+ T cells, occurrence of opportunistic infection, cachexia, and lymphomas. We report in this study that vaccination with the genetically attenuated poxvirus vector expressing the structural Ags of SIVmac (NYVAC-SIV-gag, pol, env) in combination with priming with DNA-SIV-gag, env resulted in significant suppression of viremia within 2 mo after mucosal exposure to the highly pathogenic SIVmac251 in the majority of vaccinated macaques. The control of viremia in these macaques was long lasting and inversely correlated to the level of both pre- and postchallenge Gag-specific lymphoproliferative responses, as well as to the level of total SIV-specific CD4+ T lymphocyte responses at the peak of acute viremia as detected by intracellular cytokine-staining assay. Viremia containment also correlated with the frequency of the immunodominant Gag181–189CM9 epitope-specific CD8+ T cells present before the challenge or expanded during acute infection. These data indicate, for the first time, the importance of vaccine-induced CD4+ Th cell responses as an immune correlate of viremia containment. The results presented in this work also further demonstrate the potential of a DNA-prime/attenuated poxvirus-boost vaccine regimen in an animal model that well mirrors human AIDS.


Journal of Biological Chemistry | 2008

Intracellular Interaction of Interleukin-15 with Its Receptor α during Production Leads to Mutual Stabilization and Increased Bioactivity

Cristina Bergamaschi; Margherita Rosati; Rashmi Jalah; Antonio Valentin; Viraj Kulkarni; Candido Alicea; Gen-Mu Zhang; Vainav Patel; Barbara K. Felber; George N. Pavlakis

We show that co-expression of interleukin 15 (IL-15) and IL-15 receptor α (IL-15Rα) in the same cell allows for the intracellular interaction of the two proteins early after translation, resulting in increased stability and secretion of both molecules as a complex. In the absence of co-expressed IL-15Rα, a large portion of the produced IL-15 is rapidly degraded immediately after synthesis. Co-injection into mice of IL-15 and IL-15Rα expression plasmids led to significantly increased levels of the cytokine in serum as well as increased biological activity of IL-15. Examination of natural killer cells and T lymphocytes in mouse organs showed a great expansion of both cell types in the lung, liver, and spleen. The presence of IL-15Rα also increased the number of CD44high memory cells with effector phenotype (CD44highCD62L-). Thus, mutual stabilization of IL-15 and IL-15Rα leads to remarkable increases in production, stability, and tissue availability of bioactive IL-15 in vivo. The in vivo data show that the most potent form of IL-15 is as part of a complex with its receptor α either on the surface of the producing cells or as a soluble extracellular complex. These results explain the reason for coordinate expression of IL-15 and IL-15Rα in the same cell and suggest that the IL-15Rα is part of the active IL-15 cytokine rather than part of the receptor.


Molecular and Cellular Biology | 1999

Identification of Novel Import and Export Signals of Human TAP, the Protein That Binds to the Constitutive Transport Element of the Type D Retrovirus mRNAs

Jenifer Bear; Wei Tan; Andrei S. Zolotukhin; Carlos Tabernero; Eric A. Hudson; Barbara K. Felber

ABSTRACT The nuclear export of the unspliced type D retrovirus mRNA depends on the cis-acting constitutive transport RNA element (CTE) that has been shown to interact with the human TAP (hTAP) protein promoting the export of the CTE-containing mRNAs. We report here that hTAP is a 619-amino-acid protein extending the previously identified protein by another 60 residues at the N terminus and that hTAP shares high homology with the predicted rat and mouse TAP proteins. We found that hTAP is a nuclear protein that accumulates in the nuclear rim and the nucleoplasm. We further demonstrated that hTAP is able to shuttle between the nucleus and the cytoplasm. Identification of the signals responsible for nuclear import (NLS) and export (NES) revealed that they are distinct but partially overlapping. NLS and NES of hTAP are active transferable signals that do not share similarities with known elements. The C-terminal portion contributes further to hTAP’s nuclear retention and contains a signal(s) for nuclear rim association. Taken together, our data show that hTAP is a dynamic protein capable of bidirectional trafficking across the nuclear envelope. These data further support hTAP’s role as an export factor of the CTE-containing mRNAs.


Molecular and Cellular Biology | 1992

Mechanism of translation of monocistronic and multicistronic human immunodeficiency virus type 1 mRNAs.

Stefan Schwartz; Barbara K. Felber; George N. Pavlakis

We have used a panel of cDNA clones expressing wild-type and mutant human immunodeficiency virus type 1 (HIV-1) mRNAs to study translation of these mRNAs in eucaryotic cells. The tat open reading frame (ORF) has a strong signal for translation initiation, while rev and vpu ORFs have weaker signals. The expression of downstream ORFs is inhibited in mRNAs that contain the tat ORF as the first ORF. In contrast, downstream ORFs are expressed efficiently from mRNAs that have rev or vpu as the first ORF. All env mRNAs contain the upstream vpu ORF. Expression of HIV-1 Env protein requires a weak vpu AUG, which allows leaky scanning to occur, thereby allowing ribosomes access to the downstream env ORF. We concluded that HIV-1 mRNAs are translated by the scanning mechanism and that expression of more than one protein from each mRNA was caused by leaky scanning at the first AUG of the mRNA.


Journal of Immunology | 2001

Potentiation of simian immunodeficiency virus (SIV)-specific CD4(+) and CD8(+) T cell responses by a DNA-SIV and NYVAC-SIV prime/boost regimen.

Zdeněk Hel; Wen-Po Tsai; Arthur Thornton; Janos Nacsa; Laura Giuliani; Elzbieta Tryniszewska; Monita Poudyal; David Venzon; Xiaochi Wang; John D. Altman; David I. Watkins; Wenhong Lu; Agneta von Gegerfelt; Barbara K. Felber; James Tartaglia; George N. Pavlakis; Genoveffa Franchini

T cell-mediated immune responses play an important role in the containment of HIV-1 replication. Therefore, an effective vaccine against HIV-1 should be able to elicit high frequencies of virus-specific CD8+ and CD4+ T cells. The highly attenuated poxvirus-based vaccine candidate, NYVAC-SIV-gag-pol-env (NYVAC-SIV-gpe), has been shown to induce and/or expand SIV-specific CD4+ and CD8+ T cell responses in both naive and infected macaques. In this study, the immunogenicity of NYVAC-SIV-gpe alone was compared with a combination regimen where priming with an optimized DNA-SIV-gag-env vaccine candidate was followed by a NYVAC-SIV-gpe boost. In macaques immunized with the prime-boost regimen, the extent and durability of CD8+ T cell response to an immunodominant SIV gag epitope was increased and these animals recognized a broader array of subdominant SIV epitopes in the cytolytic assay. In addition, the prime-boost regimen significantly enhanced the proliferative responses to both SIV gag and env proteins. Thus, the combination of these vaccine modalities may represent a valuable strategy in the development of a vaccine for HIV.


Molecular and Cellular Biology | 2003

PSF acts through the human immunodeficiency virus type 1 mRNA instability elements to regulate virus expression.

Andrei S. Zolotukhin; Daniel Michalowski; Jenifer Bear; Sergey Smulevitch; Abdulmaged M. Traish; Rui Peng; James G. Patton; Ivan N. Shatsky; Barbara K. Felber

ABSTRACT Human immunodeficiency virus type 1 (HIV) gag/pol and env mRNAs contain cis-acting regulatory elements (INS) that impair stability, nucleocytoplasmic transport, and translation by unknown mechanisms. This downregulation can be counteracted by the viral Rev protein, resulting in efficient export and expression of these mRNAs. Here, we show that the INS region in HIV-1 gag mRNA is a high-affinity ligand of p54nrb/PSF, a heterodimeric transcription/splicing factor. Both subunits bound INS RNA in vitro with similar affinity and specificity. Using an INS-containing subgenomic gag mRNA, we show that it specifically associated with p54nrb in vivo and that PSF inhibited its expression, acting via INS. Studying the authentic HIV-1 mRNAs produced from an infectious molecular clone, we found that PSF affected specifically the INS-containing, Rev-dependent transcripts encoding Gag-Pol and Env. Both subunits contained nuclear export and nuclear retention signals, whereas p54nrb was continuously exported from the nucleus and associated with INS-containing mRNA in the cytoplasm, suggesting its additional role at late steps of mRNA metabolism. Thus, p54nrb and PSF have properties of key factors mediating INS function and likely define a novel mRNA regulatory pathway that is hijacked by HIV-1.

Collaboration


Dive into the Barbara K. Felber's collaboration.

Top Co-Authors

Avatar

George N. Pavlakis

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Margherita Rosati

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Candido Alicea

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Viraj Kulkarni

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Cristina Bergamaschi

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Jenifer Bear

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar

Andrei S. Zolotukhin

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge