Amardeep S. Dhillon
Peter MacCallum Cancer Centre
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amardeep S. Dhillon.
Oncogene | 2007
Amardeep S. Dhillon; Suzanne Hagan; Walter Kolch
Cancer can be perceived as a disease of communication between and within cells. The aberrations are pleiotropic, but mitogen-activated protein kinase (MAPK) pathways feature prominently. Here, we discuss recent findings and hypotheses on the role of MAPK pathways in cancer. Cancerous mutations in MAPK pathways are frequently mostly affecting Ras and B-Raf in the extracellular signal-regulated kinase pathway. Stress-activated pathways, such as Jun N-terminal kinase and p38, largely seem to counteract malignant transformation. The balance and integration between these signals may widely vary in different tumours, but are important for the outcome and the sensitivity to drug therapy.
Molecular and Cellular Biology | 2001
Kam C. Yeung; David W. Rose; Amardeep S. Dhillon; Diane Yaros; Marcus Gustafsson; Devasis Chatterjee; Brian McFerran; James H. Wyche; Walter Kolch; John M. Sedivy
ABSTRACT The Raf kinase inhibitor protein (RKIP) acts as a negative regulator of the mitogen-activated protein (MAP) kinase (MAPK) cascade initiated by Raf-1. RKIP inhibits the phosphorylation of MAP/extracellular signal-regulated kinase 1 (MEK1) by Raf-1 by disrupting the interaction between these two kinases. We show here that RKIP also antagonizes the signal transduction pathways that mediate the activation of the transcription factor nuclear factor kappa B (NF-κB) in response to stimulation with tumor necrosis factor alpha (TNF-α) or interleukin 1 beta. Modulation of RKIP expression levels affected NF-κB signaling independent of the MAPK pathway. Genetic epistasis analysis involving the ectopic expression of kinases acting in the NF-κB pathway indicated that RKIP acts upstream of the kinase complex that mediates the phosphorylation and inactivation of the inhibitor of NF-κB (IκB). In vitro kinase assays showed that RKIP antagonizes the activation of the IκB kinase (IKK) activity elicited by TNF-α. RKIP physically interacted with four kinases of the NF-κB activation pathway, NF-κB-inducing kinase, transforming growth factor beta-activated kinase 1, IKKα, and IKKβ. This mode of action bears striking similarities to the interactions of RKIP with Raf-1 and MEK1 in the MAPK pathway. Emerging data from diverse organisms suggest that RKIP and RKIP-related proteins represent a new and evolutionarily highly conserved family of protein kinase regulators. Since the MAPK and NF-κB pathways have physiologically distinct roles, the function of RKIP may be, in part, to coordinate the regulation of these pathways.
The EMBO Journal | 2002
Amardeep S. Dhillon; Sharon Meikle; Zihni Yazici; Manfred Eulitz; Walter Kolch
The Raf‐1 kinase is regulated by phosphorylation, and Ser259 has been identified as an inhibitory phosphorylation site. Here we show that the dephosphorylation of Ser259 is an essential part of the Raf‐1 activation process, and further reveal the molecular role of Ser259. The fraction of Raf‐1 that is phosphorylated on Ser259 is refractory to mitogenic stimulation. Mutating Ser259 elevates kinase activity because of enhanced binding to Ras and constitutive membrane recruitment. This facilitates the phosphorylation of an activating site, Ser338. The mutation of Ser259 also increases the functional coupling to MEK, augmenting the efficiency of MEK activation. Our results suggest that Ser259 regulates the coupling of Raf‐1 to upstream activators as well as to its downstream substrate MEK, thus determining the pool of Raf‐1 that is competent for signalling. They also suggest a new model for Raf‐1 activation where the release of repression through Ser259 dephosphorylation is the pivotal step.
Molecular and Cellular Biology | 2002
Amardeep S. Dhillon; Claire Pollock; Helge Steen; Peter E. Shaw; Harald Mischak; Walter Kolch
ABSTRACT The Raf-1 kinase activates the ERK (extracellular-signal-regulated kinase) pathway. The cyclic AMP (cAMP)-dependent protein kinase (PKA) can inhibit Raf-1 by direct phosphorylation. We have mapped all cAMP-induced phosphorylation sites in Raf-1, showing that serines 43, 259, and 621 are phosphorylated by PKA in vitro and induced by cAMP in vivo. Serine 43 phosphorylation decreased the binding to Ras in serum-starved but not in mitogen-stimulated cells. However, the kinase activity of a RafS43A mutant was fully inhibited by PKA. Mutation of serine 259 increased the basal Raf-1 activity and rendered it largely resistant to inhibition by PKA. cAMP increased Raf-1 serine 259 phosphorylation in a PKA-dependent manner with kinetics that correlated with ERK deactivation. PKA also decreased Raf-1 serine 338 phosphorylation of Raf-1, previously shown to be required for Raf-1 activation. Serine 338 phosphorylation of a RafS259A mutant was unaffected by PKA. Using RafS259 mutants we also demonstrate that Raf-1 is the sole target for PKA inhibition of ERK and ERK-induced gene expression, and that Raf-1 inhibition is mediated mainly through serine 259 phosphorylation.
Archives of Biochemistry and Biophysics | 2002
Amardeep S. Dhillon; Walter Kolch
The Raf-1 kinase is the entry point to the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK-1/2) signaling pathway, which controls fundamental cellular functions including proliferation, differentiation, and survival. As such, Raf-1 is regulated by complex mechanisms that are incompletely understood. Recent results have shown that release from repression is an important event that facilitates the interaction of Raf-1 with the Ras activator and its substrate, MAPK/ERK-1/2 kinase. A number of distinct activation steps contribute in a combinatorial fashion to regulate and adjust Raf-1 activity. The efficiency of downstream signal transmission is modulated by protein:protein interactions, and new data consolidate an important role for kinase suppressor of ras (KSR) as a scaffolding protein. KSR is a dynamic scaffold whose function and localization is regulated by phosphorylation.
Oncogene | 2008
Sandra M. Beach; Huihui Tang; Sungdae Park; Amardeep S. Dhillon; Evan T. Keller; Walter Kolch; Kam C. Yeung
Diminished expression of the metastasis suppressor protein RKIP was previously reported in a number of cancers. The underlying mechanism remains unknown. Here, we show that the expression of RKIP negatively correlates with that of Snail zinc-transcriptional repressor, a key modulator of normal and neoplastic epithelial–mesenchymal transition (EMT) program. With a combination of loss-of-function and gain-of-function approaches, we showed that Snail repressed the expression of RKIP in metastatic prostate cancer cell lines. The effect of Snail on RKIP was on the level of transcriptional initiation and mediated by a proximal E-box on the RKIP promoter. Our results therefore suggest that RKIP is a novel component of the Snail transcriptional regulatory network important for the progression and metastasis of cancer.
Nature Cell Biology | 2006
Alex von Kriegsheim; Andrew R. Pitt; G. Joan Grindlay; Walter Kolch; Amardeep S. Dhillon
The Raf–MEK–ERK pathway couples growth factor, mitogenic and extracellular matrix signals to cell fate decisions such as growth, proliferation, migration, differentiation and survival. Raf-1 is a direct effector of the Ras GTPase and is the initiating kinase in this signalling cascade. Although Raf-1 activation is well studied, little is known about how Raf-1 is inactivated. Here, we used a proteomic approach to identify molecules that may inactivate Raf-1 signalling. Protein phosphatase 5 (PP5) was identified as an inactivator that associates with Raf-1 on growth factor stimulation and selectively dephosphorylates an essential activating site, Ser 338. The PP5-mediated dephosphorylation of Ser 338 inhibited Raf-1 activity and downstream signalling to MEK, an effect that was prevented by phosphomimetic substitution of Ser 338, or by ablation of PP5 catalytic function. Furthermore, depletion of endogenous PP5 increased cellular phospho-Ser 338 levels. Our results suggest that PP5 is a physiological regulator of Raf-1 signalling pathways.
Cancer Research | 2005
Claire Pollock; Senji Shirasawa; Takehiko Sasazuki; Walter Kolch; Amardeep S. Dhillon
RAS oncogenes are thought to play a role at multiple stages of tumorigenesis. The role and mechanisms by which RAS oncogenes maintain the transformed state of human cancer cells are poorly understood. Here, we have studied the role of oncogenic K-RAS in maintaining cytoskeletal disruption, cell adhesion and motility in metastatic colon carcinoma cells. Targeted deletion of K-RAS(G13D) from HCT116 colon carcinoma cells restored their ability to assemble stress fibers and focal adhesions/complexes, accompanied by increased cell-matrix adhesion and reduced motility. We further show that oncogenic K-Ras induces high Rho activity, but uncouples Rho from stress fiber formation. This uncoupling required the maintenance of high levels of the activator protein-1 family member, Fra-1, via a mitogen-activated protein/extracellular signal-regulated kinase-dependent pathway. We also show that PI3-kinase signaling is required for the motility of HCT116 cells downstream of oncogenic K-Ras. Our findings suggest that mutated K-RAS oncogenes are essential for maintenance of the transformed and invasive phenotype of human colon cancer cells.
Cell Cycle | 2007
Amardeep S. Dhillon; Alex von Kriegsheim; Joan Grindlay; Walter Kolch
The Raf-1 kinase is an effector of Ras GTPases that lies at the apex of the three-tier Raf/MEK/ERK pathway. Raf-1 activation is a complex process that entails two major events – relief of autoinhibition imposed by the regulatory domain and kinase domain activation. Recent studies indicate that the transition of Raf-1 from an active to an inactive state bears similar complexity to the activation process. Both these events require dynamic changes in Raf-1 phosphorylation. Here, we discuss the critical role of phosphatases and feedback phosphorylation during activation and inactivation of Raf-1 signalling.
Cancer Cell | 2004
Amardeep S. Dhillon; Walter Kolch
The Raf/MEK/ERK pathway is a conserved signaling module controlling cell growth, proliferation, apoptosis, and differentiation. Constitutive activation of this pathway is involved in malignant transformation by several oncogenes, most notably, Ras. The recent discovery by Davies et al. of somatic mutations in the B-RAF gene in human tumors has generated enormous interest in how Raf kinases are regulated and how mutations in B-RAF lead to transformation. A recent study in Cell by Wan et al. reports the crystal structure of the B-Raf kinase domain, providing important new insights into these questions.