Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Erinn B. Rankin is active.

Publication


Featured researches published by Erinn B. Rankin.


Cell Death & Differentiation | 2008

The role of hypoxia-inducible factors in tumorigenesis

Erinn B. Rankin; Amato J. Giaccia

Hypoxia-inducible factors (HIFs) are essential mediators of the cellular oxygen-signaling pathway. They are heterodimeric transcription factors consisting of an oxygen-sensitive alpha subunit (HIF-α) and a constitutive beta subunit (HIF-β) that facilitate both oxygen delivery and adaptation to oxygen deprivation by regulating the expression of genes that control glucose uptake, metabolism, angiogenesis, erythropoiesis, cell proliferation, and apoptosis. In most experimental models, the HIF pathway is a positive regulator of tumor growth as its inhibition often results in tumor suppression. In clinical samples, HIF is found elevated and correlates with poor patient prognosis in a variety of cancers. In summary, HIF regulates multiple aspects of tumorigenesis, including angiogenesis, proliferation, metabolism, metastasis, differentiation, and response to radiation therapy, making it a critical regulator of the malignant phenotype.


Journal of Clinical Investigation | 2007

Regulation of iron homeostasis by the hypoxia-inducible transcription factors (HIFs)

Carole Peyssonnaux; Annelies S. Zinkernagel; Reto A. Schuepbach; Erinn B. Rankin; Sophie Vaulont; Volker H. Haase; Victor Nizet; Randall S. Johnson

Iron is essential for many biological processes, including oxygen delivery, and its supply is tightly regulated. Hepcidin, a small peptide synthesized in the liver, is a key regulator of iron absorption and homeostasis in mammals. Hepcidin production is increased by iron overload and decreased by anemia and hypoxia; but the molecular mechanisms that govern the hepcidin response to these stimuli are not known. Here we establish that the von Hippel-Lindau/hypoxia-inducible transcription factor (VHL/HIF) pathway is an essential link between iron homeostasis and hepcidin regulation in vivo. Through coordinate downregulation of hepcidin and upregulation of erythropoietin and ferroportin, the VHL-HIF pathway mobilizes iron to support erythrocyte production.


Journal of Clinical Investigation | 2007

Hypoxia-inducible factor–2 (HIF-2) regulates hepatic erythropoietin in vivo

Erinn B. Rankin; Mangatt P. Biju; Qingdu Liu; Travis L. Unger; Jennifer Rha; Randall S. Johnson; M. Celeste Simon; Brian Keith; Volker H. Haase

Erythropoiesis is critically dependent on erythropoietin (EPO), a glycoprotein hormone that is regulated by hypoxia-inducible factor (HIF). Hepatocytes are the primary source of extrarenal EPO in the adult and express HIF-1 and HIF-2, whose roles in the hypoxic induction of EPO remain controversial. In order to define the role of HIF-1 and HIF-2 in the regulation of hepatic EPO expression, we have generated mice with conditional inactivation of Hif-1alpha and/or Hif-2alpha (Epas1) in hepatocytes. We have previously shown that inactivation of the von Hippel-Lindau tumor suppressor pVHL, which targets both HIFs for proteasomal degradation, results in increased hepatic Epo production and polycythemia independent of Hif-1alpha. Here we show that conditional inactivation of Hif-2alpha in pVHL-deficient mice suppressed hepatic Epo and the development of polycythemia. Furthermore, we found that physiological Epo expression in infant livers required Hif-2alpha but not Hif-1alpha and that the hypoxic induction of liver Epo in anemic adults was Hif-2alpha dependent. Since other Hif target genes such phosphoglycerate kinase 1 (Pgk) were Hif-1alpha dependent, we provide genetic evidence that HIF-1 and HIF-2 have distinct roles in the regulation of hypoxia-inducible genes and that EPO is preferentially regulated by HIF-2 in the liver.


Cancer Research | 2006

Renal Cyst Development in Mice with Conditional Inactivation of the von Hippel-Lindau Tumor Suppressor

Erinn B. Rankin; John E. Tomaszewski; Volker H. Haase

Inactivation of the von Hippel-Lindau tumor suppressor, pVHL, is associated with both hereditary and sporadic renal cysts and renal cell carcinoma, which are commonly thought to arise from the renal proximal tubule. pVHL regulates the protein stability of hypoxia-inducible factor (HIF)-alpha subunits and loss of pVHL function leads to HIF stabilization. The role of HIF in the development of VHL-associated renal lesions remains to be determined. To investigate the functional consequences of pVHL inactivation and the role of HIF signaling in renal epithelial cells, we used the phosphoenolpyruvate carboxykinase (PEPCK) promoter to generate transgenic mice in which Cre-recombinase is expressed in the renal proximal tubule and in hepatocytes. We found that conditional inactivation of VHL in PEPCK-Cre mutants resulted in renal cyst development that was associated with increased erythropoietin levels and polycythemia. Increased expression of the HIF target gene erythropoietin was limited to the liver, whereas expression of carbonic anhydrase 9 and multidrug resistance gene 1 was up-regulated in the renal cortex of mutant mice. Inactivation of the HIF-alpha binding partner, arylhydrocarbon receptor nuclear translocator (Arnt), but not Hif-1alpha, suppressed the development of renal cysts. Here, we present the first mouse model of VHL-associated renal disease that will provide a basis for further genetic studies to define the molecular events that are required for the progression of VHL-associated renal cysts to clear cell renal cell carcinoma.


Molecular and Cellular Biology | 2010

Regulation of the Histone Demethylase JMJD1A by Hypoxia-Inducible Factor 1α Enhances Hypoxic Gene Expression and Tumor Growth

Adam J. Krieg; Erinn B. Rankin; Denise A. Chan; Olga V. Razorenova; Sully Fernandez; Amato J. Giaccia

ABSTRACT The hypoxia-inducible transcription factors (HIFs) directly and indirectly mediate cellular adaptation to reduced oxygen tensions. Recent studies have shown that the histone demethylase genes JMJD1A, JMJD2B, and JARID1B are HIF targets, suggesting that HIFs indirectly influence gene expression at the level of histone methylation under hypoxia. In this study, we identify a subset of hypoxia-inducible genes that are dependent on JMJD1A in both renal cell and colon carcinoma cell lines. JMJD1A regulates the expression of adrenomedullin (ADM) and growth and differentiation factor 15 (GDF15) under hypoxia by decreasing promoter histone methylation. In addition, we demonstrate that loss of JMJD1A is sufficient to reduce tumor growth in vivo, demonstrating that histone demethylation plays a significant role in modulating growth within the tumor microenvironment. Thus, hypoxic regulation of JMJD1A acts as a signal amplifier to facilitate hypoxic gene expression, ultimately enhancing tumor growth.


Molecular and Cellular Biology | 2009

Hypoxia-Inducible Factor 2 Regulates Hepatic Lipid Metabolism

Erinn B. Rankin; Jennifer Rha; Mary A. Selak; Travis L. Unger; Brian Keith; Qingdu Liu; Volker H. Haase

ABSTRACT In mammals, the liver integrates nutrient uptake and delivery of carbohydrates and lipids to peripheral tissues to control overall energy balance. Hepatocytes maintain metabolic homeostasis by coordinating gene expression programs in response to dietary and systemic signals. Hepatic tissue oxygenation is an important systemic signal that contributes to normal hepatocyte function as well as disease. Hypoxia-inducible factors 1 and 2 (HIF-1 and HIF-2, respectively) are oxygen-sensitive heterodimeric transcription factors, which act as key mediators of cellular adaptation to low oxygen. Previously, we have shown that HIF-2 plays an important role in both physiologic and pathophysiologic processes in the liver. HIF-2 is essential for normal fetal EPO production and erythropoiesis, while constitutive HIF-2 activity in the adult results in polycythemia and vascular tumorigenesis. Here we report a novel role for HIF-2 in regulating hepatic lipid metabolism. We found that constitutive activation of HIF-2 in the adult results in the development of severe hepatic steatosis associated with impaired fatty acid β-oxidation, decreased lipogenic gene expression, and increased lipid storage capacity. These findings demonstrate that HIF-2 functions as an important regulator of hepatic lipid metabolism and identify HIF-2 as a potential target for the treatment of fatty liver disease.


Science | 2016

Hypoxic control of metastasis

Erinn B. Rankin; Amato J. Giaccia

Metastatic disease is the leading cause of cancer-related deaths and involves critical interactions between tumor cells and the microenvironment. Hypoxia is a potent microenvironmental factor promoting metastatic progression. Clinically, hypoxia and the expression of the hypoxia-inducible transcription factors HIF-1 and HIF-2 are associated with increased distant metastasis and poor survival in a variety of tumor types. Moreover, HIF signaling in malignant cells influences multiple steps within the metastatic cascade. Here we review research focused on elucidating the mechanisms by which the hypoxic tumor microenvironment promotes metastatic progression. These studies have identified potential biomarkers and therapeutic targets regulated by hypoxia that could be incorporated into strategies aimed at preventing and treating metastatic disease.


Cell | 2012

The HIF Signaling Pathway in Osteoblasts Directly Modulates Erythropoiesis through the Production of EPO

Erinn B. Rankin; Colleen Wu; Richa Khatri; Tremika L.S. Wilson; Rebecca Andersen; Elisa Araldi; Andrew L. Rankin; Jenny Yuan; Calvin J. Kuo; Ernestina Schipani; Amato J. Giaccia

Osteoblasts are an important component of the hematopoietic microenvironment in bone. However, the mechanisms by which osteoblasts control hematopoiesis remain unknown. We show that augmented HIF signaling in osteoprogenitors results in HSC niche expansion associated with selective expansion of the erythroid lineage. Increased red blood cell production occurred in an EPO-dependent manner with increased EPO expression in bone and suppressed EPO expression in the kidney. In contrast, inactivation of HIF in osteoprogenitors reduced EPO expression in bone. Importantly, augmented HIF activity in osteoprogenitors protected mice from stress-induced anemia. Pharmacologic or genetic inhibition of prolyl hydroxylases1/2/3 in osteoprogenitors elevated EPO expression in bone and increased hematocrit. These data reveal an unexpected role for osteoblasts in the production of EPO and modulation of erythropoiesis. Furthermore, these studies demonstrate a molecular role for osteoblastic PHD/VHL/HIF signaling that can be targeted to elevate both HSCs and erythroid progenitors in the local hematopoietic microenvironment.


Molecular and Cellular Biology | 2005

Inactivation of the Arylhydrocarbon Receptor Nuclear Translocator (Arnt) Suppresses von Hippel-Lindau Disease-Associated Vascular Tumors in Mice

Erinn B. Rankin; Debra F. Higgins; Jacqueline A. Walisser; Randall S. Johnson; Christopher A. Bradfield; Volker H. Haase

ABSTRACT Patients with germ line mutations in the VHL tumor suppressor gene are predisposed to the development of highly vascularized tumors within multiple tissues. Loss of pVHL results in constitutive activation of the transcription factors HIF-1 and HIF-2, whose relative contributions to the pathogenesis of the VHL phenotype have yet to be defined. In order to examine the role of HIF in von Hippel-Lindau (VHL)-associated vascular tumorigenesis, we utilized Cre-loxP-mediated recombination to inactivate hypoxia-inducible factor-1α (Hif-1α) and arylhydrocarbon receptor nuclear translocator (Arnt) genes in a VHL mouse model of cavernous liver hemangiomas and polycythemia. Deletion of Hif-1α did not affect the development of vascular tumors and polycythemia, nor did it suppress the increased expression of vascular endothelial growth factor (Vegf) and erythropoietin (Epo). In contrast, phosphoglycerokinase (Pgk) expression was substantially decreased, providing evidence for target gene-dependent functional redundancy between different Hif transcription factors. Inactivation of Arnt completely suppressed the development of hemangiomas, polycythemia, and Hif-induced gene expression. Here, we demonstrate genetically that the development of VHL-associated vascular tumors in the liver depends on functional ARNT. Furthermore, we provide evidence that individual HIF transcription factors may play distinct roles in the development of specific VHL disease manifestations.


Cancer Research | 2010

AXL Is an Essential Factor and Therapeutic Target for Metastatic Ovarian Cancer

Erinn B. Rankin; Katherine Fuh; Tiffany E. Taylor; Adam J. Krieg; Margaret Musser; Jenny Yuan; Kevin Wei; Calvin J. Kuo; Teri A. Longacre; Amato J. Giaccia

The receptor tyrosine kinase AXL is thought to play a role in metastasis; however, the therapeutic efficacy of an AXL-targeting agent remains largely untested in metastatic disease. In this study, we defined AXL as a therapeutic target for metastatic ovarian cancer. AXL is primarily expressed in metastases and advanced-stage human ovarian tumors but not in normal ovarian epithelium. Genetic inhibition of AXL in human metastatic ovarian tumor cells is sufficient to prevent the initiation of metastatic disease in vivo. Mechanistically, inhibition of AXL signaling in animals with metastatic disease results in decreased invasion and matrix metalloproteinase activity. Most importantly, soluble human AXL receptors that imposed a specific blockade of the GAS6/AXL pathway had a profound inhibitory effect on progression of established metastatic ovarian cancer without normal tissue toxicity. These results offer the first genetic validation of GAS6/AXL targeting as an effective strategy for inhibition of metastatic tumor progression in vivo. Furthermore, this study defines the soluble AXL receptor as a therapeutic candidate agent for treatment of metastatic ovarian cancer, for which current therapies are ineffective.

Collaboration


Dive into the Erinn B. Rankin's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Douglas A. Jones

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge