Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amber Gonda is active.

Publication


Featured researches published by Amber Gonda.


PLOS ONE | 2015

Curcumin Modulates Pancreatic Adenocarcinoma Cell-Derived Exosomal Function

Carlos J. Diaz Osterman; James C. Lynch; Patrick Leaf; Amber Gonda; Heather R. Ferguson Bennit; Duncan Griffiths; Nathan R. Wall

Pancreatic cancer has the highest mortality rates of all cancer types. One potential explanation for the aggressiveness of this disease is that cancer cells have been found to communicate with one another using membrane-bound vesicles known as exosomes. These exosomes carry pro-survival molecules and increase the proliferation, survival, and metastatic potential of recipient cells, suggesting that tumor-derived exosomes are powerful drivers of tumor progression. Thus, to successfully address and eradicate pancreatic cancer, it is imperative to develop therapeutic strategies that neutralize cancer cells and exosomes simultaneously. Curcumin, a turmeric root derivative, has been shown to have potent anti-cancer and anti-inflammatory effects in vitro and in vivo. Recent studies have suggested that exosomal curcumin exerts anti-inflammatory properties on recipient cells. However, curcumin’s effects on exosomal pro-tumor function have yet to be determined. We hypothesize that curcumin will alter the pro-survival role of exosomes from pancreatic cancer cells toward a pro-death role, resulting in reduced cell viability of recipient pancreatic cancer cells. The main objective of this study was to determine the functional alterations of exosomes released by pancreatic cancer cells exposed to curcumin compared to exosomes from untreated pancreatic cancer cells. We demonstrate, using an in vitro cell culture model involving pancreatic adenocarcinoma cell lines PANC-1 and MIA PaCa-2, that curcumin is incorporated into exosomes isolated from curcumin-treated pancreatic cancer cells as observed by spectral studies and fluorescence microscopy. Furthermore, curcumin is delivered to recipient pancreatic cancer cells via exosomes, promoting cytotoxicity as demonstrated by Hoffman modulation contrast microscopy as well as AlamarBlue and Trypan blue exclusion assays. Collectively, these data suggest that the efficacy of curcumin may be enhanced in pancreatic cancer cells through exosomal facilitation.


Cancer Microenvironment | 2015

Exosomes Secreted from Human Cancer Cell Lines Contain Inhibitors of Apoptosis (IAP)

Malyn May Asuncion Valenzuela; Heather R. Ferguson Bennit; Amber Gonda; Carlos J. Diaz Osterman; Abby Hibma; Salma Khan; Nathan R. Wall

Exosomes are endosomal-derived nanovesicles released by normal and tumor cells which have been shown to transfer functionally active protein, lipids, mRNAs and miRNAs between cells. Varying in molecular profiles, biological roles, functional roles and protein contents, exosomes have been described as “multi-purpose carriers” playing a role in supporting the survival and growth of tumor cells. The IAP Survivin has been found to be present in tumor exosomes. However, the existence of other IAPs in tumor exosomes is still unknown. Survivin, cIAP1, cIAP2 and XIAP mRNA and protein are differently expressed in a panel of tumor cell lines: DLCL2, HeLa, MCF-7, Panc-1, and PC3. Exosomes were isolated from conditioned media collected from the cells from which RNA and protein were extracted. Our results provide evidence that like Survivin, XIAP, cIAP1 and cIAP2 proteins are found in tumor exosomes. The mRNA expression, however, is differentially expressed across the tumor cell lines. The presence of these bioactive molecules in exosomes may not only serve as warning signals, but also play a role in providing protection to the cancer cells against changes that are constantly occurring in the tumor microenvironment.


Pancreas | 2016

Curcumin Induces Pancreatic Adenocarcinoma Cell Death Via Reduction of the Inhibitors of Apoptosis.

Díaz Osterman Cj; Amber Gonda; TessaRae Stiff; Sigaran U; Malyn May Asuncion Valenzuela; Ferguson Bennit Hr; Ron B. Moyron; Salma Khan; Nathan R. Wall

Objectives The inhibitor of apoptosis (IAP) proteins are critical modulators of chemotherapeutic resistance in various cancers. To address the alarming emergence of chemotherapeutic resistance in pancreatic cancer, we investigated the efficacy of the turmeric derivative curcumin in reducing IAP protein and mRNA expression resulting in pancreatic cancer cell death. Methods The pancreatic adenocarcinoma cell line PANC-1 was used to assess curcumins effects in pancreatic cancer. Curcumin uptake was measured by spectral analysis and fluorescence microscopy. AlamarBlue and Trypan blue exclusion assays were used to determine PANC-1 cell viability after curcumin treatment. Visualization of PANC-1 cell death was performed using Hoffman Modulation Contrast microscopy. Western blot, and polymerase chain reaction analyses were used to evaluate curcumins effects on IAP protein and mRNA expression. Results Curcumin enters PANC-1 cells and is ubiquitously present within the cell after treatment. Furthermore, curcumin reduces cell viability and induces morphological changes characteristic of cell death. Additionally, curcumin decreases IAP protein and mRNA expression in PANC-1 cells. Conclusions These data demonstrate that PANC-1 cells are sensitive to curcumin treatment. Futthermore, curcumin is a potential therapeutic tool for overcoming chemotherapeutic resistance mediated by IAPs. Together, this data supports a role for curcumin as part of the therapeutic approach for the treatment of pancreatic cancer.


Proteomics Clinical Applications | 2017

Differential protein expression in exosomal samples taken from trauma patients

Ron B. Moyron; Amber Gonda; Matthew J. Selleck; Xian Luo-Owen; Richard D. Catalano; Thomas O'Callahan; Carlos Garberoglio; David Turay; Nathan R. Wall

Traumatic brain injuries (TBI) are among the most misdiagnosed and underreported types of head trauma. The potential long‐term impact of undiagnosed or incorrectly identified concussions and other head injuries are potentially devastating, as evidenced by the increasing societal burden exhibited by soldiers returning from combat and athletes in contact sports. Concussions and TBI are notoriously difficult to correctly diagnose and prognosis for these injuries is poorly understood. In order to increase the likelihood of successful diagnosis, treatment, and prediction of outcomes, a definitive differential diagnosis will need to be established. The establishment of a “trauma–specific profile” or a panel of known trauma markers will significantly aid in this goal. Small membrane vesicles called exosomes have been shown to contain proteins and injury‐specific biomarkers. In the future it is possible that they could become an important tool, utilized for their diagnostic and therapeutic potential.


OncoTargets and Therapy | 2015

Cell death in response to antimetabolites directed at ribonucleotide reductase and thymidylate synthase

Malyn May Asuncion Valenzuela; Imilce V. Castro; Amber Gonda; Carlos J. Diaz Osterman; Jessica Ms Jutzy; Jonathan R. Aspe; Salma Khan; Jonathan W. Neidigh; Nathan R. Wall

New agent development, mechanistic understanding, and combinatorial partnerships with known and novel modalities continue to be important in the study of pancreatic cancer and its improved treatment. In this study, known antimetabolite drugs such as gemcitabine (ribonucleotide reductase inhibitor) and 5-fluorouracil (thymidylate synthase inhibitor) were compared with novel members of these two drug families in the treatment of a chemoresistant pancreatic cancer cell line PANC-1. Cellular survival data, along with protein and messenger ribonucleic acid expression for survivin, XIAP, cIAP1, and cIAP2, were compared from both the cell cytoplasm and from exosomes after single modality treatment. While all antimetabolite drugs killed PANC-1 cells in a time- and dose-dependent manner, neither family significantly altered the cytosolic protein level of the four inhibitors of apoptosis (IAPs) investigated. Survivin, XIAP, cIAP1, and cIAP2 were found localized to exosomes where no significant difference in expression was recorded. This inability for significant and long-lasting expression may be a reason why pancreatic cancer lacks responsiveness to these and other cancer-killing agents. Continued investigation is required to determine the responsibilities of these IAPs in their role in chemoresistance in pancreatic adenocarcinoma.


Blood and Lymphatic Cancer: Targets and Therapy | 2017

Uptake of lymphoma-derived exosomes by peripheral blood leukocytes

Heather R. Ferguson Bennit; Amber Gonda; Laura Oppegard; David P Chi; Salma Khan; Nathan R. Wall

Exosomes are nanosized lipid vesicles secreted into blood and other body fluids and serve as vehicles for intercellular communication. Despite being an important component of the tumor microenvironment (TME), exosomal targeting and uptake into recipient cells are still not fully understood. Few studies have looked at lymphoma exosomes and their interactions with circulating blood cells. In this study, we examine the exosomal uptake distribution among peripheral blood leukocytes (PBLs) using vesicles derived from a diffuse large B cell lymphoma cell line, WSU-DLCL2. Lymphoma cells survive, proliferate, and are protected from the cytotoxic effects of chemotherapeutic agents by soluble factors or by direct contact with inflammatory and stromal cells within the TME. In an attempt to close the gap in knowledge concerning lymphoma TME immunosuppression, we have treated normal human PBLs with PKH67-labeled lymphoma exosomes and monitored the uptake by measuring fluorescence at different time points using flow cytometry and fluorescent microscopy. Our results show that of the four populations examined, B cells and monocytes demonstrated uptake of PKH67-labeled exosomes, while T cells and NK cells displayed significantly less uptake.


PLOS ONE | 2017

Racial differences in the expression of inhibitors of apoptosis (IAP) proteins in extracellular vesicles (EV) from prostate cancer patients

Salma Khan; Jennifer E. Simpson; James C. Lynch; David Turay; Saied Mirshahidi; Amber Gonda; Tino W. Sanchez; Carlos A. Casiano; Nathan R. Wall

African-American men with prostate cancer typically develop more aggressive tumors than men from other racial/ethnic groups, resulting in a disproportionately high mortality from this malignancy. This study evaluated differences in the expression of inhibitors of apoptosis proteins (IAPs), a known family of oncoproteins, in blood-derived exosomal vesicles (EV) between African-American and European-American men with prostate cancer. The ExoQuick™ method was used to isolate EV from both plasma and sera of African-American (n = 41) and European-American (n = 31) men with prostate cancer, as well as from controls with no cancer diagnosis (n = 10). EV preparations were quantified by acetylcholinesterase activity assays, and assessed for their IAP content by Western blotting and densitometric analysis. Circulating levels of the IAP Survivin were evaluated by ELISA. We detected a significant increase in the levels of circulating Survivin in prostate cancer patients compared to controls (P<0.01), with the highest levels in African-American patients (P<0.01). African-American patients with prostate cancer also contained significantly higher amounts of EVs in their plasma (P<0.01) and sera (P<0.05) than European-American patients. In addition, EVs from African-American patients with prostate cancer contained significantly higher amounts of the IAPs Survivin (P<0.05), XIAP (P<0.001), and cIAP-2 (P<0.01) than EVs from European-American patients. There was no significant correlation between expression of IAPs and clinicopathological parameters in the two patient groups. Increased expression of IAPs in EVs from African-American patients with prostate cancer may influence tumor aggressiveness and contribute to the mortality disparity observed in this patient population. EVs could serve as reservoirs of novel biomarkers and therapeutic targets that may have clinical utility in reducing prostate cancer health disparities.


Oncotarget | 2018

Exosomal survivin facilitates vesicle internalization

Amber Gonda; Janviere Kabagwira; Girish N. Senthil; Heather R. Ferguson Bennit; Jonathan W. Neidigh; Salma Khan; Nathan R. Wall

Survivin, a member of the inhibitor of apoptosis (IAP) protein family plays a significant role in cell fate and function. It is significantly overexpressed in tumor cells and has been identified in most cancer cell types. A novel extracellular population has recently been identified and its function is still unknown. Emerging evidence continues to shed light on the important role the tumor microenvironment (TME) has on tumor survival and progression. This new population of survivin has been seen to enhance the tumor phenotype when internalized by recipient cells. In this paper, we sought to better understand the mechanism by which survivin is taken up by cancer cells and the possible role it plays in this phenomenon. We isolated the exosomal carriers of extracellular survivin and using a lipophilic stain, PKH67, we tracked their uptake with immunofluorescence and flow cytometry. We found that by blocking exosomal survivin, exosome internalization is reduced, signifying a novel function for this protein. We also discovered that the common membrane receptors, transferrin receptor, endothelin B receptor, insulin receptor alpha, and membrane glucocorticoid receptor all facilitate exosomal internalization. This understanding further clarifies the protein-protein interactions in the TME that may influence tumor progression and identifies additional potential chemotherapeutic targets.


Cancer Microenvironment | 2018

Peripheral Blood Cell Interactions of Cancer-Derived Exosomes Affect Immune Function

Heather R. Ferguson Bennit; Amber Gonda; James R.W. McMullen; Janviere Kabagwira; Nathan R. Wall

Cancer-derived exosomes are constitutively produced and secreted into the blood and biofluids of their host patients providing a liquid biopsy for early detection and diagnosis. Given their ubiquitous nature, cancer exosomes influence biological mechanisms that are beneficial to the tumor cells where they are produced and the microenvironment in which these tumors exist. Accumulating evidence suggests that exosomes transport proteins, lipids, DNA, mRNA, miRNA and long non coding RNA (lncRNA) for the purpose of cell-cell and cell-extracellular communication. These exosomes consistently reflect the status as well as identity of their cell of origin and as such may conceivably be affecting the ability of a functional immune system to recognize and eliminate cancer cells. Recognizing and mapping the pathways in which immune suppression is garnered through these tumor derived exosome (TEX) may lead to treatment strategies in which specific cell membrane proteins or receptors may be targeted, allowing for immune surveillance to once again help with the treatment of cancer. This Review focuses on how cancer exosomes interact with immune cells in the blood.


Head and Neck-journal for The Sciences and Specialties of The Head and Neck | 2017

Pathologic significance of a novel oncoprotein in thyroid cancer progression

Anthony Firek; Mia Perez; Amber Gonda; Li Lei; Iqbal Munir; Alfred A. Simental; Frances E. Carr; Benjamin J. Becerra; Marino De Leon; Salma Khan

The incidence of thyroid cancer is increasing worldwide, and there is an emerging need to develop accurate tools for diagnosis. Fine needle aspiration biopsy has greatly improved evaluation of thyroid nodules, but challenges with indeterminate lesions remain in up to 25% of biopsies. Novel tissue biomarkers may assist in improved nodule characterization. Microcalcifications occurring in thyroid cancers suggest proteins involved in bone formation may play a role in thyroid carcinogenesis. We evaluated the expression of the known osteogenic protein, Enigma, in thyroid cancer as a candidate oncoprotein and role in carcinogenesis based on association with other known oncoproteins such as bone morphogenetic protein‐1 (BMP‐1).

Collaboration


Dive into the Amber Gonda's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge