Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Nathan R. Wall is active.

Publication


Featured researches published by Nathan R. Wall.


Cell | 2004

Yin Yang 1 Is a Negative Regulator of p53

Guangchao Sui; Yujiang Shi; Chrystelle Brignone; Nathan R. Wall; Peng Yin; Mary E. Donohoe; Margaret Po-Shan Luke; Dominica Calvo; Steven R. Grossman; Yang Shi

Yin Yang 1 (YY1) is a transcription factor that plays an essential role in development. However, the full spectrum of YY1s functions and mechanism of action remains unclear. We find that YY1 ablation results in p53 accumulation due to a reduction of p53 ubiquitination in vivo. Conversely, YY1 overexpression stimulates p53 ubiquitination and degradation. Significantly, recombinant YY1 is sufficient to induce Hdm2-mediated p53 polyubiquitination in vitro, suggesting that this function of YY1 is independent of its transcriptional activity. We identify direct physical interactions of YY1 with Hdm2 and p53 and show that the basis for YY1-regulating p53 ubiquitination is its ability to facilitate Hdm2-p53 interaction. Importantly, the tumor suppressor p14ARF compromises the Hdm2-YY1 interaction, which is important for YY1 regulation of p53. Taken together, these findings identify YY1 as a potential cofactor for Hdm2 in the regulation of p53 homeostasis and suggest a possible role for YY1 in tumorigenesis.


Journal of Clinical Investigation | 2004

Mitochondrial survivin inhibits apoptosis and promotes tumorigenesis

Takehiko Dohi; Elena Beltrami; Nathan R. Wall; Janet Plescia; Dario C. Altieri

Evasion of apoptosis is a hallmark of cancer, but the molecular circuitries of this process are not understood. Here we show that survivin, a member of the inhibitor of apoptosis gene family that is overexpressed in cancer, exists in a novel mitochondrial pool in tumor cells. In response to cell death stimulation, mitochondrial survivin is rapidly discharged in the cytosol, where it prevents caspase activation and inhibits apoptosis. Selective targeting of survivin to mitochondria enhances colony formation in soft agar, accelerates tumor growth in immunocompromised animals, and abolishes tumor cell apoptosis in vivo. Therefore, mitochondrial survivin orchestrates a novel pathway of apoptosis inhibition, which contributes to tumor progression.


Journal of Clinical Investigation | 2001

Cancer gene therapy using a survivin mutant adenovirus

Mehdi Mesri; Nathan R. Wall; Jia Li; Richard Kim; Dario C. Altieri

We have constructed a replication-deficient adenovirus encoding a nonphosphorylatable Thr(34)-->Ala mutant of the apoptosis inhibitor survivin (pAd-T34A) to target tumor cell viability in vitro and in vivo. Infection with pAd-T34A caused spontaneous apoptosis in cell lines of breast, cervical, prostate, lung, and colorectal cancer. In contrast, pAd-T34A did not affect cell viability of proliferating normal human cells, including fibroblasts, endothelium, or smooth muscle cells. Infection of tumor cells with pAd-T34A resulted in cytochrome c release from mitochondria, cleavage of approximately 46-kDa upstream caspase-9, processing of caspase-3 to the active subunits of approximately 17 and 19 kDa, and increased caspase-3 catalytic activity. When compared with chemotherapeutic regimens, pAd-T34A was as effective as taxol and considerably more effective than adriamycin in induction of tumor cell apoptosis and enhanced taxol-induced cell death. In three xenograft breast cancer models in immunodeficient mice, pAd-T34A suppressed de novo tumor formation, inhibited by approximately 40% the growth of established tumors, and reduced intraperitoneal tumor dissemination. Tumors injected with pAd-T34A exhibited loss of proliferating cells and massive apoptosis by in situ internucleosomal DNA fragmentation. These data suggest that adenoviral targeting of the survivin pathway may provide a novel approach for selective cancer gene therapy.


Cancer Cell | 2002

A p34cdc2 survival checkpoint in cancer

Daniel S. O'Connor; Nathan R. Wall; Andrew C. G. Porter; Dario C. Altieri

A checkpoint surveying the entry into mitosis responds to defects in spindle microtubule assembly/stability. This has been used to trigger apoptosis in cancer cells, but how the spindle checkpoint couples to the cell survival machinery has remained elusive. Here, we report that microtubule stabilization engenders a survival pathway that depends on elevated activity of p34(cdc2) kinase and increased expression of the apoptosis inhibitor and mitotic regulator, survivin. Pharmacologic, genetic, or molecular ablation of p34(cdc2) kinase after microtubule stabilization resulted in massive apoptosis independent of p53, suppression of tumor growth, and indefinite survival without toxicity in mice. By ablating this survival checkpoint, inhibitors of p34(cdc2) kinase could safely improve the efficacy of microtubule-stabilizing agents used to treat common cancers.


The Lancet | 2003

Small RNA: can RNA interference be exploited for therapy?

Nathan R. Wall; Yang Shi

CONTEXT RNA interference (RNAi) is the sequence-specific gene-silencing induced by double-stranded RNA (dsRNA), and gives information about gene function quickly, easily, and inexpensively. The use of RNAi for genetic-based therapies is widely studied, especially in viral infections, cancers, and inherited genetic disorders. RNAi has been used to make tissue-specific knockdown mice for studying gene function in a whole animal. Combined with genomics data, RNAi-directed gene-silencing could allow functional determination of any gene expressed in a cell or pathway. The term RNAi came from the discovery that the injection of dsRNAs into Caenorhabditis elegans interferes with the expression of specific genes containing a complementary region to the delivered dsRNA. Although stalled for a time by the non-gene-specific interferon response elicited by dsRNA molecules longer than about 30 nucleotides in mammalian cells, Tom Tuschls group found that transfection of synthetic 21-nucleotide small-interfering RNA (siRNA) duplexes were highly selective and sequence-specific inhibitors of endogenous genes. STARTING POINT siRNA expression has been studied with siRNA from plasmid and viral vectors that efficiently deliver siRNAs into both dividing and non-dividing cells, stem cells, zygotes, and their differentiated progeny. A collection of RNA interference vectors that suppress 50 human de-ubiquitinating enzymes allowed Thijn Brummelkamp and colleagues to study this gene family and to identify de-ubiquitinating enzymes in cancer-relevant pathways (Nature 2003; 424: 797-801). These researchers found that the familial cylindromatosis tumour suppressor gene (CYLD), previously of unknown function, could enhance the activation of the transcription factor NF-kappaB, leading to increased resistance to apoptosis. They have now started to investigate the use of CYLD inhibitors in clinical trials. WHERE NEXT The ability to efficiently and stably produce and deliver sufficient amounts of siRNA to the proper target tissues require refinement before this new technology can be tried clinically. Initial in-vivo studies reported effective transgene suppression in adult mice by chemically synthesised siRNAs. More recently many researchers have used plasmid and viral vectors for transcription of short-hairpin RNAs, both in vitro and in vivo. With these expression systems, gene expression was more stably inhibited than with the transient knockdown recorded with chemically synthesised siRNA. Human trials exploiting these latest findings are likely to soon follow.


PLOS ONE | 2012

Plasma-Derived Exosomal Survivin, a Plausible Biomarker for Early Detection of Prostate Cancer

Salma Khan; Jessica M.S. Jutzy; Malyn May Asuncion Valenzuela; David Turay; Jonathan R. Aspe; Arjun Ashok; Saied Mirshahidi; Dan Mercola; Michael B. Lilly; Nathan R. Wall

Background Survivin is expressed in prostate cancer (PCa), and its downregulation sensitizes PCa cells to chemotherapeutic agents in vitro and in vivo. Small membrane-bound vesicles called exosomes, secreted from the endosomal membrane compartment, contain RNA and protein that they readily transport via exosome internalization into recipient cells. Recent progress has shown that tumor-derived exosomes play multiple roles in tumor growth and metastasis and may produce these functions via immune escape, tumor invasion and angiogenesis. Furthermore, exosome analysis may provide novel biomarkers to diagnose or monitor PCa treatment. Methods Exosomes were purified from the plasma and serum from 39 PCa patients, 20 BPH patients, 8 prostate cancer recurrent and 16 healthy controls using ultracentrifugation and their quantities and qualities were quantified and visualized from both the plasma and the purified exosomes using ELISA and Western blotting, respectively. Results Survivin was significantly increased in the tumor-derived samples, compared to those from BPH and controls with virtually no difference in the quantity of Survivin detected in exosomes collected from newly diagnosed patients exhibiting low (six) or high (nine) Gleason scores. Exosome Survivin levels were also higher in patients that had relapsed on chemotherapy compared to controls. Conclusions These studies demonstrate that Survivin exists in plasma exosomes from both normal, BPH and PCa subjects. The relative amounts of exosomal Survivin in PCa plasma was significantly higher than in those with pre-inflammatory BPH and control plasma. This differential expression of exosomal Survivin was seen with both newly diagnosed and advanced PCa subjects with high or low-grade cancers. Analysis of plasma exosomal Survivin levels may offer a convenient tool for diagnosing or monitoring PCa and may, as it is elevated in low as well as high Gleason scored samples, be used for early detection.


Apoptosis | 2011

Survivin is released from cancer cells via exosomes

Salma Khan; Jessica M.S. Jutzy; Jonathan R. Aspe; Dalmor W. McGregor; Jonathan W. Neidigh; Nathan R. Wall

Inhibitor of apoptosis (IAP) and Heat shock proteins (HSPs) provide assistance in protecting cells from stresses of hypoxia, imbalanced pH, and altered metabolic and redox states commonly found in the microenvironmental mixture of tumor and nontumor cells. HSPs are upregulated, cell-surface displayed and released extracellularly in some types of tumors, a finding that until now was not shared by members of the IAP family. The IAP Survivin has been implicated in apoptosis inhibition and the regulation of mitosis in cancer cells. Survivin exists in a number of subcellular locations such as the mitochondria, cytoplasm, nucleus, and most recently, the extracellular space. Our previous work showing that extracellular survivin was able to enhance cellular proliferation, survival and tumor cell invasion provides evidence that Survivin might be secreted via an unidentified exocytotic pathway. In the present study, we describe for the first time the exosome-release of Survivin to the extracellular space both basally and after proton irradiation-induced stress. To examine whether exosomes contributed to Survivin release from cancer cells, exosomes were purified from HeLa cervical carcinoma cells and exosome quantity and Survivin content were determined. We demonstrate that although proton irradiation does not influence the exosomal secretory rate, the Survivin content of exosomes isolated from HeLa cells treated with a sublethal dose of proton irradiation (3 Gy) is significantly higher than control. These data identify a novel secretory pathway by which Survivin can be actively released from cells in both the basal and stress-induced state.


British Journal of Cancer | 2009

Extracellular, cell-permeable survivin inhibits apoptosis while promoting proliferative and metastatic potential

Salma Khan; Jonathan R. Aspe; M G Asumen; Frankis G. Almaguel; Oludare Odumosu; S Acevedo-Martinez; M. De León; William H. R. Langridge; Nathan R. Wall

The tumour microenvironment is believed to be involved in development, growth, metastasis, and therapy resistance of many cancers. Here we show survivin, a member of the inhibitor of apoptosis protein (IAP) family, implicated in apoptosis inhibition and the regulation of mitosis in cancer cells, exists in a novel extracellular pool in tumour cells. Furthermore, we have constructed stable cell lines that provide the extracellular pool with either wild-type survivin (Surv-WT) or the previously described dominant-negative mutant survivin (Surv-T34A), which has proven pro-apoptotic effects in cancer cells but not in normal proliferating cells. Cancer cells grown in conditioned medium (CM) taken from Surv-WT cells absorbed survivin and experienced enhanced protection against genotoxic stresses. These cells also exhibited an increased replicative and metastatic potential, suggesting that survivin in the tumour microenvironment may be directly associated with malignant progression, further supporting survivins function in tumourigenesis. Alternatively, cancer cells grown in CM taken from the Surv-T34A cells began to apoptose through a caspase-2- and caspase-9-dependent pathway that was further enhanced by the addition of other chemo- and radiotherapeutic modalities. Together our findings suggest a novel microenvironmental function for survivin in the control of cancer aggressiveness and spread, and should result in the genesis of additional cancer treatment modalities.


Journal of Immunology | 2009

IL-7 Dependence in human B lymphopoiesis increases during progression of ontogeny from cord blood to bone marrow.

Yasmin Khan Parrish; Ineavely Baez; Terry-Ann Milford; Abigail Benitez; Nicholas R. Galloway; Jaqueline Willeman Rogerio; Eva Sahakian; Mercy Kagoda; Grace Huang; Qian-Lin Hao; Yazmar Sevilla; Lora Barsky; Ewa Zielinska; Mary Price; Nathan R. Wall; Sinisa Dovat; Kimberly J. Payne

IL-7 is critical for B cell production in adult mice; however, its role in human B lymphopoiesis is controversial. One challenge was the inability to differentiate human cord blood (CB) or adult bone marrow (BM) hematopoietic stem cells (HSCs) without murine stroma. Here, we examine the role of IL-7 in human B cell development using a novel, human-only model based on coculturing human HSCs on primary human BM stroma. In this model, IL-7 increases human B cell production by >60-fold from both CB and adult BM HSCs. IL-7-induced increases are dose-dependent and specific to CD19+ cells. STAT5 phosphorylation and expression of the Ki-67 proliferation Ag indicate that IL-7 acts directly on CD19+ cells to increase proliferation at the CD34+ and CD34− pro-B cell stages. Without IL-7, HSCs in CB, but not BM, give rise to a small but consistent population of CD19lo B lineage cells that express EBF (early B cell factor) and PAX-5 and respond to subsequent IL-7 stimulation. Flt3 ligand, but not thymic stromal-derived lymhopoietin (TSLP), was required for the IL-7-independent production of human B lineage cells. As compared with CB, adult BM shows a reduction of in vitro generative capacity that is progressively more profound in developmentally sequential populations, resulting in an ∼50-fold reduction in IL-7-dependent B lineage generative capacity. These data provide evidence that IL-7 is essential for human B cell production from adult BM and that IL-7-induced expansion of the pro-B compartment is increasingly critical for human B cell production during the progression of ontogeny.


Molecular Cancer | 2009

Docetaxel-induced prostate cancer cell death involves concomitant activation of caspase and lysosomal pathways and is attenuated by LEDGF/p75

Melanie Mediavilla-Varela; Fabio J. Pacheco; Frankis G. Almaguel; Jossymar Perez; Eva Sahakian; Tracy Daniels; Lai Sum Leoh; Amelia Padilla; Nathan R. Wall; Michael B Lilly; Marino De Leon; Carlos A. Casiano

BackgroundHormone-refractory prostate cancer (HRPC) is characterized by poor response to chemotherapy and high mortality, particularly among African American men when compared to other racial/ethnic groups. It is generally accepted that docetaxel, the standard of care for chemotherapy of HRPC, primarily exerts tumor cell death by inducing mitotic catastrophe and caspase-dependent apoptosis following inhibition of microtubule depolymerization. However, there is a gap in our knowledge of mechanistic events underlying docetaxel-induced caspase-independent cell death, and the genes that antagonize this process. This knowledge is important for circumventing HRPC chemoresistance and reducing disparities in prostate cancer mortality.ResultsWe investigated mechanistic events associated with docetaxel-induced death in HRPC cell lines using various approaches that distinguish caspase-dependent from caspase-independent cell death. Docetaxel induced both mitotic catastrophe and caspase-dependent apoptosis at various concentrations. However, caspase activity was not essential for docetaxel-induced cytotoxicity since cell death associated with lysosomal membrane permeabilization still occurred in the presence of caspase inhibitors. Partial inhibition of docetaxel-induced cytotoxicity was observed after inhibition of cathepsin B, but not inhibition of cathepsins D and L, suggesting that docetaxel induces caspase-independent, lysosomal cell death. Simultaneous inhibition of caspases and cathepsin B dramatically reduced docetaxel-induced cell death. Ectopic expression of lens epithelium-derived growth factor p75 (LEDGF/p75), a stress survival autoantigen and transcription co-activator, attenuated docetaxel-induced lysosomal destabilization and cell death. Interestingly, LEDGF/p75 overexpression did not protect cells against DTX-induced mitotic catastrophe, and against apoptosis induced by tumor necrosis factor related apoptosis inducing ligand (TRAIL), suggesting selectivity in its pro-survival activity.ConclusionThese results underscore the ability of docetaxel to induce concomitantly caspase-dependent and independent death pathways in prostate cancer cells. The results also point to LEDGF/p75 as a potential contributor to cellular resistance to docetaxel-induced lysosomal destabilization and cell death, and an attractive candidate for molecular targeting in HRPC.

Collaboration


Dive into the Nathan R. Wall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge