Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amelia Conte is active.

Publication


Featured researches published by Amelia Conte.


Brain | 2012

Clinical characteristics of patients with familial amyotrophic lateral sclerosis carrying the pathogenic GGGGCC hexanucleotide repeat expansion of C9ORF72

Adriano Chiò; Giuseppe Borghero; Gabriella Restagno; Gabriele Mora; Carsten Drepper; Bryan J. Traynor; Michael Sendtner; Maura Brunetti; Irene Ossola; Andrea Calvo; Maura Pugliatti; Maria Alessandra Sotgiu; Maria Rita Murru; Maria Giovanna Marrosu; Francesco Marrosu; Kalliopi Marinou; Jessica Mandrioli; Patrizia Sola; Claudia Caponnetto; Gianluigi Mancardi; Paola Mandich; Vincenzo La Bella; Rossella Spataro; Amelia Conte; Maria Rosaria Monsurrò; Gioacchino Tedeschi; Fabrizio Pisano; Ilaria Bartolomei; Fabrizio Salvi; Giuseppe Lauria Pinter

A large hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72, a gene located on chromosome 9p21, has been recently reported to be responsible for ~40% of familial amyotrophic lateral sclerosis cases of European ancestry. The aim of the current article was to describe the phenotype of amyotrophic lateral sclerosis cases carrying the expansion by providing a detailed clinical description of affected cases from representative multi-generational kindreds, and by analysing the age of onset, gender ratio and survival in a large cohort of patients with familial amyotrophic lateral sclerosis. We collected DNA and analysed phenotype data for 141 index Italian familial amyotrophic lateral sclerosis cases (21 of Sardinian ancestry) and 41 German index familial amyotrophic lateral sclerosis cases. Pathogenic repeat expansions were detected in 45 (37.5%) patients from mainland Italy, 12 (57.1%) patients of Sardinian ancestry and nine (22.0%) of the 41 German index familial amyotrophic lateral sclerosis cases. The disease was maternally transmitted in 27 (49.1%) pedigrees and paternally transmitted in 28 (50.9%) pedigrees (P = non-significant). On average, children developed disease 7.0 years earlier than their parents [children: 55.8 years (standard deviation 7.9), parents: 62.8 (standard deviation 10.9); P = 0.003]. Parental phenotype influenced the type of clinical symptoms manifested by the child: of the 13 cases where the affected parent had an amyotrophic lateral sclerosis-frontotemporal dementia or frontotemporal dementia, the affected child also developed amyotrophic lateral sclerosis-frontotemporal dementia in nine cases. When compared with patients carrying mutations of other amyotrophic lateral sclerosis-related genes, those with C9ORF72 expansion had commonly a bulbar onset (42.2% compared with 25.0% among non-C9ORF72 expansion cases, P = 0.03) and cognitive impairment (46.7% compared with 9.1% among non-C9ORF72 expansion cases, P = 0.0001). Median survival from symptom onset among cases carrying C9ORF72 repeat expansion was 3.2 years lower than that of patients carrying TARDBP mutations (5.0 years; 95% confidence interval: 3.6-7.2) and longer than those with FUS mutations (1.9 years; 95% confidence interval: 1.7-2.1). We conclude that C9ORF72 hexanucleotide repeat expansions were the most frequent mutation in our large cohort of patients with familial amyotrophic lateral sclerosis of Italian, Sardinian and German ancestry. Together with mutation of SOD1, TARDBP and FUS, mutations of C9ORF72 account for ~60% of familial amyotrophic lateral sclerosis in Italy. Patients with C9ORF72 hexanucleotide repeat expansions present some phenotypic differences compared with patients with mutations of other genes or with unknown mutations, namely a high incidence of bulbar-onset disease and comorbidity with frontotemporal dementia. Their pedigrees typically display a high frequency of cases with pure frontotemporal dementia, widening the concept of familial amyotrophic lateral sclerosis.


Human Molecular Genetics | 2009

A two-stage genome-wide association study of sporadic amyotrophic lateral sclerosis

Adriano Chiò; Jennifer C. Schymick; Gabriella Restagno; Sonja W. Scholz; Federica Lombardo; Shiao Lin Lai; Gabriele Mora; Hon Chung Fung; Angela Britton; Sampath Arepalli; J. Raphael Gibbs; Michael A. Nalls; Stephen Berger; Lydia Kwee; Eugene Z. Oddone; Jinhui Ding; Cynthia Crews; Ian Rafferty; Nicole Washecka; Dena Hernandez; Luigi Ferrucci; Stefania Bandinelli; Jack M. Guralnik; Fabio Macciardi; Federica Torri; Sara Lupoli; Stephen J. Chanock; Gilles Thomas; David J. Hunter; Christian Gieger

The cause of sporadic amyotrophic lateral sclerosis (ALS) is largely unknown, but genetic factors are thought to play a significant role in determining susceptibility to motor neuron degeneration. To identify genetic variants altering risk of ALS, we undertook a two-stage genome-wide association study (GWAS): we followed our initial GWAS of 545 066 SNPs in 553 individuals with ALS and 2338 controls by testing the 7600 most associated SNPs from the first stage in three independent cohorts consisting of 2160 cases and 3008 controls. None of the SNPs selected for replication exceeded the Bonferroni threshold for significance. The two most significantly associated SNPs, rs2708909 and rs2708851 [odds ratio (OR) = 1.17 and 1.18, and P-values = 6.98 x 10(-7) and 1.16 x 10(-6)], were located on chromosome 7p13.3 within a 175 kb linkage disequilibrium block containing the SUNC1, HUS1 and C7orf57 genes. These associations did not achieve genome-wide significance in the original cohort and failed to replicate in an additional independent cohort of 989 US cases and 327 controls (OR = 1.18 and 1.19, P-values = 0.08 and 0.06, respectively). Thus, we chose to cautiously interpret our data as hypothesis-generating requiring additional confirmation, especially as all previously reported loci for ALS have failed to replicate successfully. Indeed, the three loci (FGGY, ITPR2 and DPP6) identified in previous GWAS of sporadic ALS were not significantly associated with disease in our study. Our findings suggest that ALS is more genetically and clinically heterogeneous than previously recognized. Genotype data from our study have been made available online to facilitate such future endeavors.


Neurology | 2012

Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease

Serena Lattante; Amelia Conte; Marcella Zollino; Marco Luigetti; Alessandra Del Grande; Giuseppe Marangi; Angela Romano; Alessandro Marcaccio; Emiliana Meleo; Giulia Bisogni; Paolo Maria Rossini; Mario Sabatelli

Objectives: To quantify the overall contribution of mutations in the currently known amyotrophic lateral sclerosis (ALS) genes in a large cohort of sporadic patients and to make genotype–phenotype correlations. Methods: Screening for SOD1, TARDBP, FUS, ANG, ATXN2, OPTN, and C9ORF72 was carried out in 480 consecutive patients with sporadic ALS (SALS) and in 48 familial ALS (FALS) index patients admitted to a single Italian referral center. Results: Mutations were detected in 53 patients, with a cumulative frequency of 11. Seven of them were novel. The highest frequencies of positive cases were obtained in TARDBP (2.7%), C9ORF72 (2.5%), and SOD1 (2.1%). The overall group of mutated patients was indistinguishable from that without mutations as no significant differences were observed with regard to age and site of onset, frequency of clinical phenotypes, and survival. However, by separately evaluating genotype–phenotype correlation in single genes, clinical differences were observed among different genes. Duration of disease was significantly shorter in patients harboring the C9ORF72 expansion and longer in the SOD1 group. A high frequency of predominant upper motor neuron phenotype was observed among patients with TARDBP mutations. Two patients, 1 with C9ORF72 and 1 with SOD1 mutation, had concurrent ANG mutations. Mutations were detected in 43.7% of patients with FALS. Conclusions: A considerable proportion of patients with SALS harbored mutations in major ALS genes. This result has relevant implications in clinical practice, namely in genetic counseling. The detection of double mutations in 2 patients raises the hypothesis that multiple mutations model may explain genetic architecture of SALS. Neurology® 2012;79:66–72


Neurobiology of Aging | 2012

C9ORF72 hexanucleotide repeat expansions in the Italian sporadic ALS population.

Mario Sabatelli; Francesca Luisa Conforti; Marcella Zollino; Gabriele Mora; Maria Rosaria Monsurrò; Paolo Volanti; Kalliopi Marinou; Fabrizio Salvi; Massimo Corbo; Fabio Giannini; Stefania Battistini; Silvana Penco; Christian Lunetta; Aldo Quattrone; Antonio Gambardella; Giancarlo Logroscino; Isabella Laura Simone; Ilaria Bartolomei; Fabrizio Pisano; Gioacchino Tedeschi; Amelia Conte; Rossella Spataro; Vincenzo La Bella; Claudia Caponnetto; Gianluigi Mancardi; Paola Mandich; Patrizia Sola; Jessica Mandrioli; Alan E. Renton; Elisa Majounie

It has been recently reported that a large proportion of patients with familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are associated with a hexanucleotide (GGGGCC) repeat expansion in the first intron of C9ORF72. We have assessed 1757 Italian sporadic ALS cases, 133 from Sardinia, 101 from Sicily, and 1523 from mainland Italy. Sixty (3.7%) of 1624 mainland Italians and Sicilians and 9 (6.8%) of the 133 Sardinian sporadic ALS cases carried the pathogenic repeat expansion. None of the 619 regionally matched control samples (1238 chromosomes) carried the expansion. Twenty-five cases (36.2%) had behavioral FTD in addition to ALS. FTD or unspecified dementia was also detected in 19 pedigrees (27.5%) in first-degree relatives of ALS patients. Cases carrying the C9ORF72 hexanucleotide expansion survived 1 year less than cases who did not carry this mutation. In conclusion, we found that C9ORF72 hexanucleotide repeat expansions represents a sizeable proportion of apparent sporadic ALS in the Italian and Sardinian population, representing by far the most common mutation in Italy and the second most common in Sardinia.


Neurobiology of Aging | 2011

FUS mutations in sporadic amyotrophic lateral sclerosis.

Shiao Lin Lai; Yevgeniya Abramzon; Jennifer C. Schymick; Dietrich A. Stephan; Travis Dunckley; Allissa Dillman; Mark R. Cookson; Andrea Calvo; Stefania Battistini; Fabio Giannini; Claudia Caponnetto; Giovanni Luigi Mancardi; Rossella Spataro; Maria Rosaria Monsurrò; Gioacchino Tedeschi; Kalliopi Marinou; Mario Sabatelli; Amelia Conte; Jessica Mandrioli; Patrizia Sola; Fabrizio Salvi; Ilaria Bartolomei; Federica Lombardo; Gabriele Mora; Gabriella Restagno; Adriano Chiò; Bryan J. Traynor

Mutations in the FUS gene have recently been described as a cause of familial amyotrophic lateral sclerosis (ALS), but their role in the pathogenesis of sporadic ALS is unclear. We undertook mutational screening of all coding exons of FUS in 228 sporadic ALS cases, and, as previous reports suggest that exon 15 represents a mutational hotspot, we sequenced this exon in an additional 1295 sporadic cases. Six variants in six different cases were found, indicating that FUS mutations can underlie apparently sporadic ALS, but account for less than 1% of this form of disease.


Neurology | 2009

Natural history of young-adult amyotrophic lateral sclerosis

Mario Sabatelli; F. Madia; Amelia Conte; Marco Luigetti; Marcella Zollino; Irene Mancuso; M. Lo Monaco; G. Lippi; P. Tonali

Background: Amyotrophic lateral sclerosis (ALS) affects people of all ages, but whether the wide range of age at onset is due to distinct diseases or merely reflects phenotypic variability of the same disorder is still unknown. The purpose of this study is to describe clinical and prognostic features of young-adult ALS, with onset before age 40 years, and to compare them with features of the common adult-onset type. Methods: We analyzed clinical features and long-term follow-up of 57 young-adult ALS patients, with disease onset between 20 and 40 years, and compared them with 450 patients affected by adult-onset ALS. Results: We found that the majority of young-adult patients showed a predominant upper motor neuron (p-UMN) ALS, characterized by marked spastic paraparesis, with lower motor neuron signs confined to the upper limbs. The proportion of patients with p-UMN ALS phenotype was 59.6% in the young-adult patients and 17.4% in the adult-onset form (p < 0.0001). Young-adult ALS with p-UMN phenotype had longer survival than did the classic phenotype: median survival was 74 months (range 10–226, 95% CI 60.61–87.38) in the former and 56 months (range 6–106, 95% CI 48.65–63.34) in the latter (p = 0.03). In the young-adult patients, a marked male excess was observed in the p-UMN ALS group (5.8:1), whereas the ratio of men to women was 1.1:1 in the classic phenotype (p = 0.01). Conclusions: Our findings show that young-adult amyotrophic lateral sclerosis with the predominant upper motor neuron phenotype represents a distinctive clinical variant characterized by a unique clinical pattern, longer survival, and male prevalence.


Clinical Genetics | 2013

Clinical and genetic heterogeneity of amyotrophic lateral sclerosis.

Mario Sabatelli; Amelia Conte; Marcella Zollino

Although clinical picture of amyotrophic lateral sclerosis (ALS) is a stereotypical one, resulting from combination of signs secondary to dysfunction of both upper motor neuron (UMN) and lower motor neuron (LMN), clinical heterogeneity is a consistent feature of the disease. Age of onset, relative mix of UMN and LMN signs, duration of the disease and association with other conditions are major factors contributing to variable clinical phenotypes. Genetically, familial forms of ALS are associated with a large number of pleiotropic genes whose mutations impair different biochemical pathways, resulting in overlapping clinical and pathological phenotypes. Over the last few years contribution of large‐ and low‐effect genes to sporadic ALS is increasingly recognized.


Neuromuscular Disorders | 2012

P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis

Amelia Conte; Serena Lattante; Marcella Zollino; Giuseppe Marangi; Marco Luigetti; Alessandra Del Grande; Serenella Servidei; Federica Trombetta; Mario Sabatelli

Some FUS mutations have been observed in patients with the juvenile form of Amyotrophic Lateral Sclerosis starting before 25 years. We report an 11-year-old girl affected by sporadic juvenile ALS with a rapid course resulting in tracheostomy after 14 months from the onset. Sequencing FUS gene revealed a de novo P525L mutation. Our findings, together with literature data, indicate that this mutation is consistently associated with a specific phenotype characterized by juvenile onset, severe course and high proportion of de novo mutations in sporadic cases.


Human Molecular Genetics | 2009

Rare Missense Variants of Neuronal Nicotinic Acetylcholine Receptor Altering Receptor Function Are Associated with Sporadic Amyotrophic Lateral Sclerosis

Mario Sabatelli; Fabrizio Eusebi; Ammar Al-Chalabi; Amelia Conte; F. Madia; Marco Luigetti; Irene Mancuso; Cristina Limatola; Flavia Trettel; Fabrizia Sobrero; Silvia Di Angelantonio; Francesca Grassi; Amalia Di Castro; Claudia Moriconi; Sergio Fucile; Serena Lattante; Giuseppe Marangi; Marina Murdolo; Daniela Orteschi; Alessandra Del Grande; Pietro Tonali; Giovanni Neri; Marcella Zollino

Sporadic amyotrophic lateral sclerosis (SALS) is a motor neuron degenerative disease of unknown etiology. Current thinking on SALS is that multiple genetic and environmental factors contribute to disease liability. Since neuronal acetylcholine receptors (nAChRs) are part of the glutamatergic pathway, we searched for sequence variants in CHRNA3, CHRNA4 and CHRNB4 genes, encoding neuronal nicotinic AChR subunits, in 245 SALS patients and in 450 controls. We characterized missense variants by in vitro mutagenesis, cell transfection and electrophysiology. Sequencing the regions encoding the intracellular loop of AChRs subunits disclosed 15 missense variants (6.1%) in 14 patients compared with only six variants (1.3%) in controls (P = 0.001; OR 4.48, 95% CI 1.7-11.8). The frequency of variants in exons encoding extracellular and transmembrane domains and in intronic regions did not differ. NAChRs formed by mutant alpha3 and alpha4 and wild-type (WT) beta4 subunits exhibited altered affinity for nicotine (Nic), reduced use-dependent rundown of Nic-activated currents (I(Nic)) and reduced desensitization leading to sustained intracellular Ca(2+) concentration, in comparison with WT-nAChR. The cellular loop has a crucial importance for receptor trafficking and regulating ion channel properties. Missense variants in this domain are significantly over-represented in SALS patients and alter functional properties of nAChR in vitro, resulting in increased Ca(2+) entry into the cells. We suggest that these gain-of-function variants might contribute to disease liability in a subset of SALS because Ca(2+) signals mediate nAChRs neuromodulatory effects, including regulation of glutamate release and control of cell survival.


Journal of the Neurological Sciences | 2010

A novel HSPB1 mutation in an Italian patient with CMT2/dHMN phenotype.

Marco Luigetti; Gian Maria Fabrizi; F. Madia; Moreno Ferrarini; Amelia Conte; A. Del Grande; Giorgio Tasca; P. Tonali; Mario Sabatelli

Mutations in the gene encoding 27-kDa small heat-shock protein B1 (HSPB1) have been reported in association with Charcot-Marie-Tooth disease type 2F or dHMN type II. We describe an Italian patient with wasting and weakness of distal muscles, involving primarily and mostly the lower limbs and later the upper limbs, in which a novel mutation of HSPB1, T180I, was detected. Electrophysiological evaluation disclosed a pure motor axonal neuropathy. Sural nerve biopsy showed a mild reduction of myelinated fibre density. All these findings suggested a CMT2/dHMN phenotype.

Collaboration


Dive into the Amelia Conte's collaboration.

Top Co-Authors

Avatar

Mario Sabatelli

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Marco Luigetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Marcella Zollino

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Alessandra Del Grande

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

F. Madia

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Giuseppe Marangi

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Serena Lattante

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Giulia Bisogni

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Gabriele Mora

Katholieke Universiteit Leuven

View shared research outputs
Top Co-Authors

Avatar

P. Tonali

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge