Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Giuseppe Marangi is active.

Publication


Featured researches published by Giuseppe Marangi.


American Journal of Medical Genetics Part C-seminars in Medical Genetics | 2008

On the nosology and pathogenesis of Wolf–Hirschhorn syndrome: Genotype–phenotype correlation analysis of 80 patients and literature review

Marcella Zollino; Marina Murdolo; Giuseppe Marangi; Vanna Pecile; Cinzia Galasso; Laura Mazzanti; Giovanni Neri

Based on genotype–phenotype correlation analysis of 80 Wolf–Hirschhorn syndrome (WHS) patients, as well as on review of relevant literature, we add further insights to the following aspects of WHS: (1) clinical delineation and phenotypic categories; (2) characterization of the basic genomic defect, mechanisms of origin and familiarity; (3) identification of prognostic factors for mental retardation; (4) chromosome mapping of the distinctive clinical signs, in an effort to identify pathogenic genes. Clinically, we consider that minimal diagnostic criteria for WHS, defining a “core” phenotype, are typical facial appearance, mental retardation, growth delay and seizures (or EEG anomalies). Three different categories of the WHS phenotype were defined, generally correlating with the extent of the 4p deletion. The first one comprises a small deletion not exceeding 3.5 Mb, that is usually associated with a mild phenotype, lacking major malformations. This category is likely under‐diagnosed. The second and by far the more frequent category is identified by large deletions, averaging between 5 and 18 Mb, and causes the widely recognizable WHS phenotype. The third clinical category results from a very large deletion exceeding 22–25 Mb causing a severe phenotype, that can hardly be defined as typical WHS. Genetically, de novo chromosome abnormalities in WHS include pure deletions but also complex rearrangements, mainly unbalanced translocations. With the exception of t(4p;8p), WHS‐associated chromosome abnormalities are neither mediated by segmental duplications, nor associated with a parental inversion polymorphism on 4p16.3. Factors involved in prediction of prognosis include the extent of the deletion, the occurrence of complex chromosome anomalies, and the severity of seizures. We found that the core phenotype maps within the terminal 1.9 Mb region of chromosome 4p. Therefore, WHSCR‐2 should be considered the critical region for this condition. We also confirmed that the pathogenesis of WHS is multigenic. Specific and independent chromosome regions were characterized for growth delay and seizures, as well as for the additional clinical signs that characterize this condition. With the exception of parental balanced translocations, familial recurrence is uncommon.


Neurology | 2012

Contribution of major amyotrophic lateral sclerosis genes to the etiology of sporadic disease

Serena Lattante; Amelia Conte; Marcella Zollino; Marco Luigetti; Alessandra Del Grande; Giuseppe Marangi; Angela Romano; Alessandro Marcaccio; Emiliana Meleo; Giulia Bisogni; Paolo Maria Rossini; Mario Sabatelli

Objectives: To quantify the overall contribution of mutations in the currently known amyotrophic lateral sclerosis (ALS) genes in a large cohort of sporadic patients and to make genotype–phenotype correlations. Methods: Screening for SOD1, TARDBP, FUS, ANG, ATXN2, OPTN, and C9ORF72 was carried out in 480 consecutive patients with sporadic ALS (SALS) and in 48 familial ALS (FALS) index patients admitted to a single Italian referral center. Results: Mutations were detected in 53 patients, with a cumulative frequency of 11. Seven of them were novel. The highest frequencies of positive cases were obtained in TARDBP (2.7%), C9ORF72 (2.5%), and SOD1 (2.1%). The overall group of mutated patients was indistinguishable from that without mutations as no significant differences were observed with regard to age and site of onset, frequency of clinical phenotypes, and survival. However, by separately evaluating genotype–phenotype correlation in single genes, clinical differences were observed among different genes. Duration of disease was significantly shorter in patients harboring the C9ORF72 expansion and longer in the SOD1 group. A high frequency of predominant upper motor neuron phenotype was observed among patients with TARDBP mutations. Two patients, 1 with C9ORF72 and 1 with SOD1 mutation, had concurrent ANG mutations. Mutations were detected in 43.7% of patients with FALS. Conclusions: A considerable proportion of patients with SALS harbored mutations in major ALS genes. This result has relevant implications in clinical practice, namely in genetic counseling. The detection of double mutations in 2 patients raises the hypothesis that multiple mutations model may explain genetic architecture of SALS. Neurology® 2012;79:66–72


Nature Genetics | 2012

Mutations in KANSL1 cause the 17q21.31 microdeletion syndrome phenotype

Marcella Zollino; Daniela Orteschi; Marina Murdolo; Serena Lattante; Domenica Battaglia; Chiara Stefanini; Eugenio Mercuri; Pietro Chiurazzi; Giovanni Neri; Giuseppe Marangi

The chromosome 17q21.31 deletion syndrome is a genomic disorder characterized by highly distinctive facial features, moderate-to-severe intellectual disability, hypotonia and friendly behavior. Here, we show that de novo loss-of-function mutations in KANSL1 (also called KIAA1267) cause a full del(17q21.31) phenotype in two unrelated individuals that lack deletion at 17q21.31. These findings indicate that 17q21.31 deletion syndrome is a monogenic disorder caused by haploinsufficiency of KANSL1.


Brain Research | 2015

Genetic causes of amyotrophic lateral sclerosis: new genetic analysis methodologies entailing new opportunities and challenges.

Giuseppe Marangi; Bryan J. Traynor

The genetic architecture of amyotrophic lateral sclerosis (ALS) is being increasingly understood. In this far-reaching review, we examine what is currently known about ALS genetics and how these genes were initially identified. We also discuss the various types of mutations that might underlie this fatal neurodegenerative condition and outline some of the strategies that might be useful in untangling them. These include expansions of short repeat sequences, common and low-frequency genetic variations, de novo mutations, epigenetic changes, somatic mutations, epistasis, oligogenic and polygenic hypotheses. This article is part of a Special Issue entitled ALS complex pathogenesis.


JAMA Neurology | 2015

A genome-wide association study of myasthenia gravis

Alan E. Renton; Hannah Pliner; Carlo Provenzano; Amelia Evoli; Roberta Ricciardi; Michael A. Nalls; Giuseppe Marangi; Yevgeniya Abramzon; Sampath Arepalli; Sean Chong; Dena Hernandez; Janel O. Johnson; Emanuela Bartoccioni; Flavia Scuderi; Michelangelo Maestri; J. Raphael Gibbs; Edoardo Errichiello; Adriano Chiò; Gabriella Restagno; Mario Sabatelli; Mark Macek; Sonja W. Scholz; Andrea M. Corse; Vinay Chaudhry; Michael Benatar; Richard J. Barohn; April L. McVey; Mamatha Pasnoor; Mazen M. Dimachkie; Julie Rowin

IMPORTANCE Myasthenia gravis is a chronic, autoimmune, neuromuscular disease characterized by fluctuating weakness of voluntary muscle groups. Although genetic factors are known to play a role in this neuroimmunological condition, the genetic etiology underlying myasthenia gravis is not well understood. OBJECTIVE To identify genetic variants that alter susceptibility to myasthenia gravis, we performed a genome-wide association study. DESIGN, SETTING, AND PARTICIPANTS DNA was obtained from 1032 white individuals from North America diagnosed as having acetylcholine receptor antibody-positive myasthenia gravis and 1998 race/ethnicity-matched control individuals from January 2010 to January 2011. These samples were genotyped on Illumina OmniExpress single-nucleotide polymorphism arrays. An independent cohort of 423 Italian cases and 467 Italian control individuals were used for replication. MAIN OUTCOMES AND MEASURES We calculated P values for association between 8,114,394 genotyped and imputed variants across the genome and risk for developing myasthenia gravis using logistic regression modeling. A threshold P value of 5.0×10(-8) was set for genome-wide significance after Bonferroni correction for multiple testing. RESULTS In the overall case-control cohort, we identified association signals at CTLA4 (rs231770; P=3.98×10(-8); odds ratio, 1.37; 95% CI, 1.25-1.49), HLA-DQA1 (rs9271871; P=1.08×10(-8); odds ratio, 2.31; 95% CI, 2.02-2.60), and TNFRSF11A (rs4263037; P=1.60×10(-9); odds ratio, 1.41; 95% CI, 1.29-1.53). These findings replicated for CTLA4 and HLA-DQA1 in an independent cohort of Italian cases and control individuals. Further analysis revealed distinct, but overlapping, disease-associated loci for early- and late-onset forms of myasthenia gravis. In the late-onset cases, we identified 2 association peaks: one was located in TNFRSF11A (rs4263037; P=1.32×10(-12); odds ratio, 1.56; 95% CI, 1.44-1.68) and the other was detected in the major histocompatibility complex on chromosome 6p21 (HLA-DQA1; rs9271871; P=7.02×10(-18); odds ratio, 4.27; 95% CI, 3.92-4.62). Association within the major histocompatibility complex region was also observed in early-onset cases (HLA-DQA1; rs601006; P=2.52×10(-11); odds ratio, 4.0; 95% CI, 3.57-4.43), although the set of single-nucleotide polymorphisms was different from that implicated among late-onset cases. CONCLUSIONS AND RELEVANCE Our genetic data provide insights into aberrant cellular mechanisms responsible for this prototypical autoimmune disorder. They also suggest that clinical trials of immunomodulatory drugs related to CTLA4 and that are already Food and Drug Administration approved as therapies for other autoimmune diseases could be considered for patients with refractory disease.


Neuromuscular Disorders | 2012

P525L FUS mutation is consistently associated with a severe form of juvenile Amyotrophic Lateral Sclerosis

Amelia Conte; Serena Lattante; Marcella Zollino; Giuseppe Marangi; Marco Luigetti; Alessandra Del Grande; Serenella Servidei; Federica Trombetta; Mario Sabatelli

Some FUS mutations have been observed in patients with the juvenile form of Amyotrophic Lateral Sclerosis starting before 25 years. We report an 11-year-old girl affected by sporadic juvenile ALS with a rapid course resulting in tracheostomy after 14 months from the onset. Sequencing FUS gene revealed a de novo P525L mutation. Our findings, together with literature data, indicate that this mutation is consistently associated with a specific phenotype characterized by juvenile onset, severe course and high proportion of de novo mutations in sporadic cases.


American Journal of Medical Genetics Part A | 2011

The Pitt-Hopkins syndrome: report of 16 new patients and clinical diagnostic criteria.

Giuseppe Marangi; Stefania Ricciardi; Daniela Orteschi; Serena Lattante; Marina Murdolo; Bruno Dallapiccola; Chiara Biscione; Rosetta Lecce; Pietro Chiurazzi; Corrado Romano; Donatella Greco; Rosa Pettinato; Giovanni Sorge; Chiara Pantaleoni; Enrico Alfei; Irene Toldo; Cinzia Magnani; Paolo Bonanni; Federica Martinez; Gigliola Serra; Domenica Battaglia; Donatella Lettori; Gessica Vasco; Anna Baroncini; Cecilia Daolio; Marcella Zollino

Pitt‐Hopkins syndrome (PTHS) is characterized by severe intellectual disability, typical facial gestalt and additional features, such as breathing anomalies. Following the discovery of the causative haploinsufficiency of transcription factor 4 (TCF4), about 60 patients have been reported. We looked for TCF4 mutations in 63 patients with a suspected PTHS. Haploinsufficiency of TCF4 was identified in 14 patients, as a consequence of large 18q21.2 chromosome deletions involving TCF4 (2 patients), gene mutations (11 patients) and a t(14q;18q) balanced translocation disrupting TCF4 (one patient). By evaluating the clinical features of these patients, along with literature data, we noticed that, in addition to the typical facial gestalt, the PTHS phenotype results from the various combinations of the following characteristics: intellectual disability with severe speech impairment, normal growth parameters at birth, postnatal microcephaly, breathing anomalies, motor incoordination, ocular anomalies, constipation, seizures, typical behavior and subtle brain abnormalities. Although PTHS is currently considered to be involved in differential diagnosis with Angelman and Rett syndromes, we found that combining the facial characteristics with a detailed analysis of both the physical and the neurological phenotype, made molecular testing for PTHS the first choice. Based on striking clinical criteria, a diagnosis of PTHS was made clinically in two patients who had normal TCF4. This report deals with the first series of PTHS patients of Italian origin.


Human Molecular Genetics | 2009

Rare Missense Variants of Neuronal Nicotinic Acetylcholine Receptor Altering Receptor Function Are Associated with Sporadic Amyotrophic Lateral Sclerosis

Mario Sabatelli; Fabrizio Eusebi; Ammar Al-Chalabi; Amelia Conte; F. Madia; Marco Luigetti; Irene Mancuso; Cristina Limatola; Flavia Trettel; Fabrizia Sobrero; Silvia Di Angelantonio; Francesca Grassi; Amalia Di Castro; Claudia Moriconi; Sergio Fucile; Serena Lattante; Giuseppe Marangi; Marina Murdolo; Daniela Orteschi; Alessandra Del Grande; Pietro Tonali; Giovanni Neri; Marcella Zollino

Sporadic amyotrophic lateral sclerosis (SALS) is a motor neuron degenerative disease of unknown etiology. Current thinking on SALS is that multiple genetic and environmental factors contribute to disease liability. Since neuronal acetylcholine receptors (nAChRs) are part of the glutamatergic pathway, we searched for sequence variants in CHRNA3, CHRNA4 and CHRNB4 genes, encoding neuronal nicotinic AChR subunits, in 245 SALS patients and in 450 controls. We characterized missense variants by in vitro mutagenesis, cell transfection and electrophysiology. Sequencing the regions encoding the intracellular loop of AChRs subunits disclosed 15 missense variants (6.1%) in 14 patients compared with only six variants (1.3%) in controls (P = 0.001; OR 4.48, 95% CI 1.7-11.8). The frequency of variants in exons encoding extracellular and transmembrane domains and in intronic regions did not differ. NAChRs formed by mutant alpha3 and alpha4 and wild-type (WT) beta4 subunits exhibited altered affinity for nicotine (Nic), reduced use-dependent rundown of Nic-activated currents (I(Nic)) and reduced desensitization leading to sustained intracellular Ca(2+) concentration, in comparison with WT-nAChR. The cellular loop has a crucial importance for receptor trafficking and regulating ion channel properties. Missense variants in this domain are significantly over-represented in SALS patients and alter functional properties of nAChR in vitro, resulting in increased Ca(2+) entry into the cells. We suggest that these gain-of-function variants might contribute to disease liability in a subset of SALS because Ca(2+) signals mediate nAChRs neuromodulatory effects, including regulation of glutamate release and control of cell survival.


European Journal of Human Genetics | 2004

A double cryptic chromosome imbalance is an important factor to explain phenotypic variability in Wolf-Hirschhorn syndrome

Marcella Zollino; Rosetta Lecce; Angelo Selicorni; Marina Murdolo; Irene Mancuso; Giuseppe Marangi; Giuseppe Zampino; Livia Garavelli; Alessandra Ferrarini; Mariano Rocchi; John M. Opitz; Giovanni Neri

A total of five Wolf–Hirschhorn syndrome (WHS) patient with a 4p16.3 de novo microdeletion was referred because of genotype–phenotype inconsistencies, first explained as phenotypic variability of the WHS. The actual deletion size was found to be about 12 Mb in three patients, 5 Mb in another one and 20 Mb in the last one, leading us to hypothesize the presence of an extrachromosome segment on the deleted 4p. A der(4)(4qter → p16.1::8p23 → pter) chromosome, resulting from an unbalanced de novo translocation was, in fact, detected in four patients and a der(4)(4qter → q32::4p15.3 → qter) in the last. Unbalanced t(4;8) translocations were maternal in origin, the rec(4p;4q) was paternal. With the purpose of verifying frequency and specificity of this phenomenon, we investigated yet another group of 20 WHS patients with de novo large deletions (n=13) or microdeletions (n=7) and with apparently straightforward genotype–phenotype correlations. The rearrangement was paternal in origin, and occurred as a single anomaly in 19 out of 20 patients. In the remaining patient, the deleted chromosome 4 was maternally derived and consisted of a der(4)(4qter → 4p16.3::8p23 → 8pter). In conclusions, we observed that 20% (5/25) of de novo WHS-associated rearrangements were maternal in origin and 80% (20/25) were paternal. All the maternally derived rearrangements were de novo unbalanced t(4;8) translocations and showed specific clinical phenotypes. Paternally derived rearrangements were usually isolated deletions. It can be inferred that a double, cryptic chromosome imbalance is an important factor for phenotypic variability in WHS. It acts either by masking the actual deletion size or by doubling a quantitative change of the genome.


Neurobiology of Aging | 2011

SOD1 G93D sporadic amyotrophic lateral sclerosis (SALS) patient with rapid progression and concomitant novel ANG variant

Marco Luigetti; Serena Lattante; Marcella Zollino; Amelia Conte; Giuseppe Marangi; Alessandra Del Grande; Mario Sabatelli

SOD1 G93D mutation has been described in amyotrophic lateral sclerosis (ALS) patients with slowly progressive disease. We describe an Italian patient affected by sporadic ALS with the SOD1 G93D mutation that disclosed an unusual rapid progression with death occurring after 30 months from the symptom onset. Considering the atypical clinical course further genes associated with ALS or known to be causative were studied including ANG, PGRN, TARDBP, FUS, VCP, CHRNA3, CHRNA4, and CHRNB4. A novel heterozygous ANG missense variant (c.433 C>T, p.R145C) was identified which is neither reported in controls nor in 1000 genomes and single nucleotide polymorphism (SNP) databases. This report confirms that clinical course of SOD1-related ALS may be modulated by other causative or associated genes, including ANG and suggests that extensive screening of ALS-associated genes in patients with an already identified mutation may be helpful for better knowledge of genetic architecture of ALS.

Collaboration


Dive into the Giuseppe Marangi's collaboration.

Top Co-Authors

Avatar

Marcella Zollino

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Serena Lattante

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Mario Sabatelli

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Amelia Conte

The Catholic University of America

View shared research outputs
Top Co-Authors

Avatar

Daniela Orteschi

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Marco Luigetti

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Alessandra Del Grande

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Marina Murdolo

Catholic University of the Sacred Heart

View shared research outputs
Top Co-Authors

Avatar

Domenica Battaglia

The Catholic University of America

View shared research outputs
Researchain Logo
Decentralizing Knowledge