Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amennai Daniel Beyeen is active.

Publication


Featured researches published by Amennai Daniel Beyeen.


Nature Genetics | 2013

Combined sequence-based and genetic mapping analysis of complex traits in outbred rats

Amelie Baud; Roel Hermsen; Victor Guryev; Pernilla Stridh; Delyth Graham; Martin W. McBride; Tatiana Foroud; S. Calderari; Margarita Diez; Johan Öckinger; Amennai Daniel Beyeen; Alan Gillett; Nada Abdelmagid; André Ortlieb Guerreiro-Cacais; Maja Jagodic; Jonatan Tuncel; Ulrika Norin; Elisabeth Beattie; N. Huynh; William H. Miller; Daniel L. Koller; Imranul Alam; Samreen Falak; Mary Osborne-Pellegrin; Esther Martínez-Membrives; Toni Cañete; Gloria Blázquez; Elia Vicens-Costa; Carme Mont-Cardona; Sira Díaz-Morán

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.


Genome Research | 2008

A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock

Martina Johannesson; Regina López-Aumatell; Pernilla Stridh; Margarita Diez; Jonatan Tuncel; Gloria Blázquez; Esther Martínez-Membrives; Toni Cañete; Elia Vicens-Costa; Delyth Graham; Richard R. Copley; Polinka Hernandez-Pliego; Amennai Daniel Beyeen; Johan Öckinger; Cristina Fernández-Santamaría; Pércio S. Gulko; Max Brenner; Adolf Tobeña; Marc Guitart-Masip; Lydia Giménez-Llort; Anna F. Dominiczak; Rikard Holmdahl; Dominique Gauguier; Tomas Olsson; Richard Mott; William Valdar; Eva E. Redei; Alberto Fernández-Teruel; Jonathan Flint

The laboratory rat (Rattus norvegicus) is a key tool for the study of medicine and pharmacology for human health. A large database of phenotypes for integrated fields such as cardiovascular, neuroscience, and exercise physiology exists in the literature. However, the molecular characterization of the genetic loci that give rise to variation in these traits has proven to be difficult. Here we show how one obstacle to progress, the fine-mapping of quantitative trait loci (QTL), can be overcome by using an outbred population of rats. By use of a genetically heterogeneous stock of rats, we map a locus contributing to variation in a fear-related measure (two-way active avoidance in the shuttle box) to a region on chromosome 5 containing nine genes. By establishing a protocol measuring multiple phenotypes including immunology, neuroinflammation, and hematology, as well as cardiovascular, metabolic, and behavioral traits, we establish the rat HS as a new resource for the fine-mapping of QTLs contributing to variation in complex traits of biomedical relevance.


Journal of Immunology | 2010

IL-22RA2 Associates with Multiple Sclerosis and Macrophage Effector Mechanisms in Experimental Neuroinflammation

Amennai Daniel Beyeen; Milena Z. Adzemovic; Johan Öckinger; Pernilla Stridh; Kristina Becanovic; Hannes Laaksonen; Hans Lassmann; Robert A. Harris; Jan Hillert; Lars Alfredsson; Elisabeth G. Celius; Hanne F. Harbo; Ingrid Kockum; Maja Jagodic; Tomas Olsson

Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS. Recent advances in whole-genome screening tools have enabled discovery of several MS risk genes, the majority of which have known immune-related functions. However, disease heterogeneity and low tissue accessibility hinder functional studies of established MS risk genes. For this reason, the MS model experimental autoimmune encephalomyelitis (EAE) is often used to study neuroinflammatory disease mechanisms. In this study, we performed high-resolution linkage analysis in a rat advanced intercross line to identify an EAE-regulating quantitative trait locus, Eae29, on rat chromosome 1. Eae29 alleles from the resistant strain both conferred milder EAE and lower production of proinflammatory molecules in macrophages, as demonstrated by the congenic line, DA.PVG-Eae29 (Dc1P). The soluble IL-22R α2 gene (Il-22ra2) lies within the Eae29 locus, and its expression was reduced in Dc1P, both in activated macrophages and splenocytes from immunized rats. Moreover, a single nucleotide polymorphism located at the end of IL-22RA2 associated with MS risk in a combined Swedish and Norwegian cohort comprising 5019 subjects, displaying an odds ratio of 1.26 (p = 8.0 × 10−4). IL-22 and its receptors have been implicated in chronic inflammation, suggesting that IL-22RA2 regulates a central immune pathway. Through a combined approach including genetic and immunological investigation in an animal model and large-scale association studies of MS patients, we establish IL-22RA2 as an MS risk gene.


Genes and Immunity | 2010

RGMA and IL21R show association with experimental inflammation and multiple sclerosis

Rita Nohra; Amennai Daniel Beyeen; J P Guo; Mohsen Khademi; Emilie Sundqvist; M T Hedreul; Finn Sellebjerg; Cathrine Smestad; Annette Bang Oturai; Hanne F. Harbo; Erik Wallström; Jan Hillert; Lars Alfredsson; Ingrid Kockum; Maja Jagodic; Johnny C. Lorentzen; Tomas Olsson

Rat chromosome 1 harbors overlapping quantitative trait loci (QTL) for cytokine production and experimental models of inflammatory diseases. We fine-dissected this region that regulated cytokine production, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), anti-MOG antibodies and pristane-induced arthritis (PIA) in advanced intercross lines (AILs). Analysis in the tenth and twelfth generation of AILs resolved the region in two narrow QTL, Eae30 and Eae31. Eae30 showed linkage to MOG-EAE, anti-MOG antibodies and levels of interleukin-6 (IL-6). Eae31 showed linkage to EAE, PIA, anti-MOG antibodies and levels of tumor necrosis factor (TNF) and IL-6. Confidence intervals defined a limited set of potential candidate genes, with the most interesting being RGMA, IL21R and IL4R. We tested the association with multiple sclerosis (MS) in a Nordic case–control material. A single nucleotide polymorphism in RGMA associated with MS in males (odds ratio (OR)=1.33). Polymorphisms of RGMA also correlated with changes in the expression of interferon-γ (IFN-γ) and TNF in cerebrospinal fluid of MS patients. In IL21R, there was one positively associated (OR=1.14) and two protective (OR=0.87 and 0.68) haplotypes. One of the protective haplotypes correlated to lower IFN-γ expression in peripheral blood mononuclear cells of MS patients. We conclude that RGMA and IL21R and their pathways are crucial in MS pathogenesis and warrant further studies as potential biomarkers and therapeutic targets.


Science Translational Medicine | 2009

A Role for VAV1 in Experimental Autoimmune Encephalomyelitis and Multiple Sclerosis

Maja Jagodic; Céline Colacios; Rita Nohra; Anne Dejean; Amennai Daniel Beyeen; Mohsen Khademi; Audrey Casemayou; Lucille Lamouroux; Christine Duthoit; Olivier Papapietro; Louise K. Sjöholm; Isabelle Bernard; Dominique Lagrange; Ingrid Dahlman; Frida Lundmark; Annette Bang Oturai; Helle Soendergaard; Anu Kemppinen; Janna Saarela; Pentti J. Tienari; Hanne F. Harbo; Anne Spurkland; Sreeram V. Ramagopalan; Dessa Sadovnick; George C. Ebers; Maria Seddighzadeh; Lars Klareskog; Lars Alfredsson; Leonid Padyukov; Jan Hillert

VAV1 plays a role in regulating proinflammatory cytokines, which underlie the susceptibility for developing experimental autoimmune encephalomyelitis and multiple sclerosis. Rat Genetics Moving Up Multiple sclerosis (MS) is a common autoimmune disease with a complex etiology that attacks the brain and spinal cord and emerges as a result from both genetic and environmental factors. At present, there is no predictive biomarker for MS and no cure for adults who present with the disease, and only a few genes have been unambiguously linked to its development. The hunt has been to address these challenges, but also to uncover new targets that are associated with a high susceptibility for MS to augment disease-modifying treatments that are in clinical use. Using experimental autoimmune encephalomyelitis, an animal model of MS, Jagodic et al. have focused on a region of the rat genome on chromosome 9 that encodes the gene Vav1. Although this gene was initially identified as an oncogene, it later was found to be an important signal transducer with a pivotal role in immune cells, the very first hint being its specific activation after T cell receptor stimulation. The authors show that a specific mutation identified in rat Vav1 altered Vav1 protein abundances, immune cell activation, and neuroinflammation induction. Taking this observation a step further, among 12,735 individuals of European descent, Jagodic et al. reveal an association between a set of common variants within the first intron of VAV1 and susceptibility for MS. Like what they observed in the rat, common VAV1 variants altered VAV1 expression and immune activation in the peripheral blood and in the cerebrospinal fluid cells of MS patients. This study displays the power of using rat genetics to encourage the discovery of human genetic targets in common diseases such as MS. Multiple sclerosis, the most common cause of progressive neurological disability in young adults, is a chronic inflammatory disease. There is solid evidence for a genetic influence in multiple sclerosis, and deciphering the causative genes could reveal key pathways influencing the disease. A genome region on rat chromosome 9 regulates experimental autoimmune encephalomyelitis, a model for multiple sclerosis. Using interval-specific congenic rat lines and association of single-nucleotide polymorphisms with inflammatory phenotypes, we localized the gene of influence to Vav1, which codes for a signal-transducing protein in leukocytes. Analysis of seven human cohorts (12,735 individuals) demonstrated an association of rs2546133-rs2617822 haplotypes in the first VAV1 intron with multiple sclerosis (CA: odds ratio, 1.18; CG: odds ratio, 0.86; TG: odds ratio, 0.90). The risk CA haplotype also predisposed for higher VAV1 messenger RNA expression. VAV1 expression was increased in individuals with multiple sclerosis and correlated with tumor necrosis factor and interferon-γ expression in peripheral blood and cerebrospinal fluid cells. We conclude that VAV1 plays a central role in controlling central nervous system immune-mediated disease and proinflammatory cytokine production critical for disease pathogenesis.


PLOS ONE | 2012

Expression of Ccl11 Associates with Immune Response Modulation and Protection against Neuroinflammation in Rats

Milena Z. Adzemovic; Johan Öckinger; Manuel Zeitelhofer; Sonja Hochmeister; Amennai Daniel Beyeen; Atul Paulson; Alan Gillett; Melanie Thessen Hedreul; Ruxandra Covacu; Hans Lassmann; Tomas Olsson; Maja Jagodic

Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.


Genes and Immunity | 2010

Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis.

Johan Öckinger; Pernilla Stridh; Amennai Daniel Beyeen; Frida Lundmark; Maria Seddighzadeh; Annette Bang Oturai; P. S. Sørensen; Åslaug R. Lorentzen; Elisabeth G. Celius; Virpi Leppa; Keijo Koivisto; Pentti J. Tienari; Lars Alfredsson; Leonid Padyukov; Jan Hillert; Ingrid Kockum; Maja Jagodic; Tomas Olsson

Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster of chemokine genes. Further, we show differential expression of Ccl2, Ccl11 and Ccl11 during EAE in rat strains with opposite susceptibility to EAE, regulated by genotype in Eae18b. The human homologous genes were tested for association to MS in 3841 cases and 4046 controls from four Nordic countries. A haplotype in CCL2 and rs3136682 in CCL1 show a protective association to MS, whereas a haplotype in CCL13 is disease predisposing. In the HLA-DRB1*15 positive subgroup, we also identified an association to a risk haplotype in CCL2, suggesting an influence from the human leukocyte antigen (HLA) locus. We further identified association to rheumatoid arthritis in CCL2, CCL8 and CCL13, indicating common regulatory mechanisms for complex diseases.


PLOS ONE | 2010

Fine-Mapping Resolves Eae23 into Two QTLs and Implicates ZEB1 as a Candidate Gene Regulating Experimental Neuroinflammation in Rat

Pernilla Stridh; Melanie Thessen Hedreul; Amennai Daniel Beyeen; Milena Z. Adzemovic; Hannes Laaksonen; Alan Gillett; Johan Öckinger; Monica Marta; Hans Lassmann; Kristina Becanovic; Maja Jagodic; Tomas Olsson

Background To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. Methodology/Principal Findings We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2. Conclusions/Significance We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.


PLOS Genetics | 2014

Parent-of-Origin Effects Implicate Epigenetic Regulation of Experimental Autoimmune Encephalomyelitis and Identify Imprinted Dlk1 as a Novel Risk Gene

Pernilla Stridh; Sabrina Ruhrmann; Petra Bergman; Melanie Thessen Hedreul; Sevasti Flytzani; Amennai Daniel Beyeen; Alan Gillett; Nina Krivosija; Johan Öckinger; Anne C. Ferguson-Smith; Maja Jagodic

Parent-of-origin effects comprise a range of genetic and epigenetic mechanisms of inheritance. Recently, detection of such effects implicated epigenetic mechanisms in the etiology of multiple sclerosis (MS), a chronic inflammatory disease of the central nervous system. We here sought to dissect the magnitude and the type of parent-of-origin effects in the pathogenesis of experimental neuroinflammation under controlled environmental conditions. We investigated inheritance of an MS-like disease in rat, experimental autoimmune encephalomyelitis (EAE), using a backcross strategy designed to identify the parental origin of disease-predisposing alleles. A striking 37–54% of all detected disease-predisposing loci depended on parental transmission. Additionally, the Y chromosome from the susceptible strain contributed to disease susceptibility. Accounting for parent-of-origin enabled more powerful and precise identification of novel risk factors and increased the disease variance explained by the identified factors by 2-4-fold. The majority of loci displayed an imprinting–like pattern whereby a gene expressed only from the maternal or paternal copy exerts an effect. In particular, a locus on chromosome 6 comprises a well-known cluster of imprinted genes including the paternally expressed Dlk1, an atypical Notch ligand. Disease-predisposing alleles at the locus conferred lower Dlk1 expression in rats and, together with data from transgenic overexpressing Dlk1 mice, demonstrate that reduced Dlk1 drives more severe disease and modulates adaptive immune reactions in EAE. Our findings suggest a significant epigenetic contribution to the etiology of EAE. Incorporating these effects enables more powerful and precise identification of novel risk factors with diagnostic and prognostic implications for complex disease.


Human Molecular Genetics | 2013

Combining genetic mapping with genome-wide expression in experimental autoimmune encephalomyelitis highlights a gene network enriched for T cell functions and candidate genes regulating autoimmunity

Melanie Thessen Hedreul; Steffen Möller; Pernilla Stridh; Yask Gupta; Alan Gillett; Amennai Daniel Beyeen; Johan Öckinger; Sevasti Flytzani; Margarita Diez; Tomas Olsson; Maja Jagodic

The experimental autoimmune encephalomyelitis (EAE) is an autoimmune disease of the central nervous system commonly used to study multiple sclerosis (MS). We combined clinical EAE phenotypes with genome-wide expression profiling in spleens from 150 backcross rats between susceptible DA and resistant PVG rat strains during the chronic EAE phase. This enabled correlation of transcripts with genotypes, other transcripts and clinical EAE phenotypes and implicated potential genetic causes and pathways in EAE. We detected 2285 expression quantitative trait loci (eQTLs). Sixty out of 599 cis-eQTLs overlapped well-known EAE QTLs and constitute positional candidate genes, including Ifit1 (Eae7), Atg7 (Eae20-22), Klrc3 (eEae22) and Mfsd4 (Eae17). A trans-eQTL that overlaps Eae23a regulated a large number of small RNAs and implicates a master regulator of transcription. We defined several disease-correlated networks enriched for pathways involved in cell-mediated immunity. They include C-type lectins, G protein coupled receptors, mitogen-activated protein kinases, transmembrane proteins, suppressors of transcription (Jundp2 and Nr1d1) and STAT transcription factors (Stat4) involved in interferon signaling. The most significant network was enriched for T cell functions, similar to genetic findings in MS, and revealed both established and novel gene interactions. Transcripts in the network have been associated with T cell proliferation and differentiation, the TCR signaling and regulation of regulatory T cells. A number of network genes and their family members have been associated with MS and/or other autoimmune diseases. Combining disease and genome-wide expression phenotypes provides a link between disease risk genes and distinct molecular pathways that are dysregulated during chronic autoimmune inflammation.

Collaboration


Dive into the Amennai Daniel Beyeen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Olsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge