Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Johan Öckinger is active.

Publication


Featured researches published by Johan Öckinger.


Nature Genetics | 2013

Combined sequence-based and genetic mapping analysis of complex traits in outbred rats

Amelie Baud; Roel Hermsen; Victor Guryev; Pernilla Stridh; Delyth Graham; Martin W. McBride; Tatiana Foroud; S. Calderari; Margarita Diez; Johan Öckinger; Amennai Daniel Beyeen; Alan Gillett; Nada Abdelmagid; André Ortlieb Guerreiro-Cacais; Maja Jagodic; Jonatan Tuncel; Ulrika Norin; Elisabeth Beattie; N. Huynh; William H. Miller; Daniel L. Koller; Imranul Alam; Samreen Falak; Mary Osborne-Pellegrin; Esther Martínez-Membrives; Toni Cañete; Gloria Blázquez; Elia Vicens-Costa; Carme Mont-Cardona; Sira Díaz-Morán

Genetic mapping on fully sequenced individuals is transforming understanding of the relationship between molecular variation and variation in complex traits. Here we report a combined sequence and genetic mapping analysis in outbred rats that maps 355 quantitative trait loci for 122 phenotypes. We identify 35 causal genes involved in 31 phenotypes, implicating new genes in models of anxiety, heart disease and multiple sclerosis. The relationship between sequence and genetic variation is unexpectedly complex: at approximately 40% of quantitative trait loci, a single sequence variant cannot account for the phenotypic effect. Using comparable sequence and mapping data from mice, we show that the extent and spatial pattern of variation in inbred rats differ substantially from those of inbred mice and that the genetic variants in orthologous genes rarely contribute to the same phenotype in both species.


Genome Research | 2008

A resource for the simultaneous high-resolution mapping of multiple quantitative trait loci in rats: The NIH heterogeneous stock

Martina Johannesson; Regina López-Aumatell; Pernilla Stridh; Margarita Diez; Jonatan Tuncel; Gloria Blázquez; Esther Martínez-Membrives; Toni Cañete; Elia Vicens-Costa; Delyth Graham; Richard R. Copley; Polinka Hernandez-Pliego; Amennai Daniel Beyeen; Johan Öckinger; Cristina Fernández-Santamaría; Pércio S. Gulko; Max Brenner; Adolf Tobeña; Marc Guitart-Masip; Lydia Giménez-Llort; Anna F. Dominiczak; Rikard Holmdahl; Dominique Gauguier; Tomas Olsson; Richard Mott; William Valdar; Eva E. Redei; Alberto Fernández-Teruel; Jonathan Flint

The laboratory rat (Rattus norvegicus) is a key tool for the study of medicine and pharmacology for human health. A large database of phenotypes for integrated fields such as cardiovascular, neuroscience, and exercise physiology exists in the literature. However, the molecular characterization of the genetic loci that give rise to variation in these traits has proven to be difficult. Here we show how one obstacle to progress, the fine-mapping of quantitative trait loci (QTL), can be overcome by using an outbred population of rats. By use of a genetically heterogeneous stock of rats, we map a locus contributing to variation in a fear-related measure (two-way active avoidance in the shuttle box) to a region on chromosome 5 containing nine genes. By establishing a protocol measuring multiple phenotypes including immunology, neuroinflammation, and hematology, as well as cardiovascular, metabolic, and behavioral traits, we establish the rat HS as a new resource for the fine-mapping of QTLs contributing to variation in complex traits of biomedical relevance.


Journal of Immunology | 2010

IL-22RA2 Associates with Multiple Sclerosis and Macrophage Effector Mechanisms in Experimental Neuroinflammation

Amennai Daniel Beyeen; Milena Z. Adzemovic; Johan Öckinger; Pernilla Stridh; Kristina Becanovic; Hannes Laaksonen; Hans Lassmann; Robert A. Harris; Jan Hillert; Lars Alfredsson; Elisabeth G. Celius; Hanne F. Harbo; Ingrid Kockum; Maja Jagodic; Tomas Olsson

Multiple sclerosis (MS) is an inflammatory neurodegenerative disease of the CNS. Recent advances in whole-genome screening tools have enabled discovery of several MS risk genes, the majority of which have known immune-related functions. However, disease heterogeneity and low tissue accessibility hinder functional studies of established MS risk genes. For this reason, the MS model experimental autoimmune encephalomyelitis (EAE) is often used to study neuroinflammatory disease mechanisms. In this study, we performed high-resolution linkage analysis in a rat advanced intercross line to identify an EAE-regulating quantitative trait locus, Eae29, on rat chromosome 1. Eae29 alleles from the resistant strain both conferred milder EAE and lower production of proinflammatory molecules in macrophages, as demonstrated by the congenic line, DA.PVG-Eae29 (Dc1P). The soluble IL-22R α2 gene (Il-22ra2) lies within the Eae29 locus, and its expression was reduced in Dc1P, both in activated macrophages and splenocytes from immunized rats. Moreover, a single nucleotide polymorphism located at the end of IL-22RA2 associated with MS risk in a combined Swedish and Norwegian cohort comprising 5019 subjects, displaying an odds ratio of 1.26 (p = 8.0 × 10−4). IL-22 and its receptors have been implicated in chronic inflammation, suggesting that IL-22RA2 regulates a central immune pathway. Through a combined approach including genetic and immunological investigation in an animal model and large-scale association studies of MS patients, we establish IL-22RA2 as an MS risk gene.


Mbio | 2016

The lung microbiota in early rheumatoid arthritis and autoimmunity

Jose U. Scher; Vijay Joshua; Alejandro Artacho; Shahla Abdollahi-Roodsaz; Johan Öckinger; Susanna Kullberg; Magnus Sköld; Anders Eklund; Johan Grunewald; Jose C. Clemente; Carles Ubeda; Leopoldo N. Segal; Anca Irinel Catrina

BackgroundAirway abnormalities and lung tissue citrullination are found in both rheumatoid arthritis (RA) patients and individuals at-risk for disease development. This suggests the possibility that the lung could be a site of autoimmunity generation in RA, perhaps in response to microbiota changes. We therefore sought to test whether the RA lung microbiome contains distinct taxonomic features associated with local and/or systemic autoimmunity.Methods16S rRNA gene high-throughput sequencing was utilized to compare the bacterial community composition of bronchoalveolar lavage fluid (BAL) in patients with early, disease-modifying anti-rheumatic drugs (DMARD)-naïve RA, patients with lung sarcoidosis, and healthy control subjects. Samples were further assessed for the presence and levels of anti-citrullinated peptide antibodies (including fine specificities) in both BAL and serum.ResultsThe BAL microbiota of RA patients was significantly less diverse and abundant when compared to healthy controls, but similar to sarcoidosis patients. This distal airway dysbiosis was attributed to the reduced presence of several genus (i.e., Actynomyces and Burkhordelia) as well as reported periodontopathic taxa, including Treponema, Prevotella, and Porphyromonas. While multiple clades correlated with local and systemic levels of autoantibodies, the genus Pseudonocardia and various related OTUs were the only taxa overrepresented in RA BAL and correlated with higher disease activity and erosions.ConclusionsDistal airway dysbiosis is present in untreated early RA and similar to that detected in sarcoidosis lung inflammation. This community perturbation, which correlates with local and systemic autoimmune/inflammatory changes, may potentially drive initiation of RA in a proportion of cases.


Genes and Immunity | 2010

Multiple loci comprising immune-related genes regulate experimental neuroinflammation

Monica Marta; Pernilla Stridh; Kristina Becanovic; Alan Gillett; Johan Öckinger; Johnny C. Lorentzen; Maja Jagodic; Tomas Olsson

A 58 Mb region on rat chromosome 4 known to regulate experimental autoimmune encephalomyelitis (EAE) was genetically dissected. High-resolution linkage analysis in an advanced intercross line (AIL) revealed four quantitative trait loci (QTLs), Eae24–Eae27. Both Eae24 and Eae25 regulated susceptibility and severity phenotypes, whereas Eae26 regulated severity and Eae27 regulated susceptibility. Analyses of the humoral immune response revealed that the levels of serum anti-myelin oligodendrocyte glycoprotein (MOG) immunoglobin G1 (IgG1) antibodies are linked to Eae24 and anti-MOG IgG2b antibodies are linked to both Eae24 and Eae26. We tested the parental DA strain and six recombinant congenic strains that include overlapping fragments of this region in MOG-EAE. Eae24 and Eae25 showed significant protection during the acute phase of EAE, whereas Eae25 and Eae26 significantly modified severity but not susceptibility. The smallest congenic fragment, which carries Eae25 alone, influenced both susceptibility and severity, and protected from the chronic phase of disease. These results support the multiple QTLs identified in the AIL. By demonstrating several QTLs comprising immune-related genes, which potentially interact, we provide a significant step toward elucidation of the polygenically regulated pathogenesis of MOG-EAE and possibly multiple sclerosis (MS), and opportunities for comparative genetics and testing in MS case–control cohorts.


PLOS ONE | 2012

Expression of Ccl11 Associates with Immune Response Modulation and Protection against Neuroinflammation in Rats

Milena Z. Adzemovic; Johan Öckinger; Manuel Zeitelhofer; Sonja Hochmeister; Amennai Daniel Beyeen; Atul Paulson; Alan Gillett; Melanie Thessen Hedreul; Ruxandra Covacu; Hans Lassmann; Tomas Olsson; Maja Jagodic

Multiple sclerosis (MS) is a polygenic disease characterized by inflammation and demyelination in the central nervous system (CNS), which can be modeled in experimental autoimmune encephalomyelitis (EAE). The Eae18b locus on rat chromosome 10 has previously been linked to regulation of beta-chemokine expression and severity of EAE. Moreover, the homologous chemokine cluster in humans showed evidence of association with susceptibility to MS. We here established a congenic rat strain with Eae18b locus containing a chemokine cluster (Ccl2, Ccl7, Ccl11, Ccl12 and Ccl1) from the EAE- resistant PVG rat strain on the susceptible DA background and utilized myelin oligodendrocyte glycoprotein (MOG)-induced EAE to characterize the mechanisms underlying the genetic regulation. Congenic rats developed a milder disease compared to the susceptible DA strain, and this was reflected in decreased demyelination and in reduced recruitment of inflammatory cells to the brain. The congenic strain also showed significantly increased Ccl11 mRNA expression in draining lymph nodes and spinal cord after EAE induction. In the lymph nodes, macrophages were the main producers of CCL11, whereas macrophages and lymphocytes expressed the main CCL11 receptor, namely CCR3. Accordingly, the congenic strain also showed significantly increased Ccr3 mRNA expression in lymph nodes. In the CNS, the main producers of CCL11 were neurons, whereas CCR3 was detected on neurons and CSF producing ependymal cells. This corresponded to increased levels of CCL11 protein in the cerebrospinal fluid of the congenic rats. Increased intrathecal production of CCL11 in congenic rats was accompanied by a tighter blood brain barrier, reflected by more occludin+ blood vessels. In addition, the congenic strain showed a reduced antigen specific response and a predominant anti-inflammatory Th2 phenotype. These results indicate novel mechanisms in the genetic regulation of neuroinflammation.


Genes and Immunity | 2010

Genetic variants of CC chemokine genes in experimental autoimmune encephalomyelitis, multiple sclerosis and rheumatoid arthritis.

Johan Öckinger; Pernilla Stridh; Amennai Daniel Beyeen; Frida Lundmark; Maria Seddighzadeh; Annette Bang Oturai; P. S. Sørensen; Åslaug R. Lorentzen; Elisabeth G. Celius; Virpi Leppa; Keijo Koivisto; Pentti J. Tienari; Lars Alfredsson; Leonid Padyukov; Jan Hillert; Ingrid Kockum; Maja Jagodic; Tomas Olsson

Multiple sclerosis (MS) is a complex disorder of the central nervous system, causing inflammation, demyelination and axonal damage. A limited number of genetic risk factors for MS have been identified, but the etiology of the disease remains largely unknown. For the identification of genes regulating neuroinflammation we used a rat model of MS, myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE), and carried out a linkage analysis in an advanced intercross line (AIL). We thereby redefine the Eae18b locus to a 0.88 Mb region, including a cluster of chemokine genes. Further, we show differential expression of Ccl2, Ccl11 and Ccl11 during EAE in rat strains with opposite susceptibility to EAE, regulated by genotype in Eae18b. The human homologous genes were tested for association to MS in 3841 cases and 4046 controls from four Nordic countries. A haplotype in CCL2 and rs3136682 in CCL1 show a protective association to MS, whereas a haplotype in CCL13 is disease predisposing. In the HLA-DRB1*15 positive subgroup, we also identified an association to a risk haplotype in CCL2, suggesting an influence from the human leukocyte antigen (HLA) locus. We further identified association to rheumatoid arthritis in CCL2, CCL8 and CCL13, indicating common regulatory mechanisms for complex diseases.


PLOS ONE | 2010

Fine-Mapping Resolves Eae23 into Two QTLs and Implicates ZEB1 as a Candidate Gene Regulating Experimental Neuroinflammation in Rat

Pernilla Stridh; Melanie Thessen Hedreul; Amennai Daniel Beyeen; Milena Z. Adzemovic; Hannes Laaksonen; Alan Gillett; Johan Öckinger; Monica Marta; Hans Lassmann; Kristina Becanovic; Maja Jagodic; Tomas Olsson

Background To elucidate mechanisms involved in multiple sclerosis (MS), we studied genetic regulation of experimental autoimmune encephalomyelitis (EAE) in rats, assuming a conservation of pathogenic pathways. In this study, we focused on Eae23, originally identified to regulate EAE in a (LEW.1AV1xPVG.1AV1)F2 cross. Our aim was to determine whether one or more genes within the 67 Mb region regulate EAE and to define candidate risk genes. Methodology/Principal Findings We used high resolution quantitative trait loci (QTL) analysis in the 10th generation (G10) of an advanced intercross line (AIL) to resolve Eae23 into two QTLs that independently regulate EAE, namely Eae23a and Eae23b. We established a congenic strain to validate the effect of this region on disease. PVG alleles in Eae23 resulted in significant protection from EAE and attenuated CNS inflammation/demyelination. Disease amelioration was accompanied with increased levels of Foxp3+ cells in the CNS of the congenic strain compared to DA. We then focused on candidate gene investigation in Eae23b, a 9 Mb region linked to all clinical phenotypes. Affymetrix exon arrays were used to study expression of the genes in Eae23b in the parental strains, where none showed differential expression. However, we found lower expression of exon 4 of ZEB1, which is specific for splice-variant Zfhep1. ZEB1 is an interleukin 2 (IL2) repressor involved in T cell development. The splice-specific variance prompted us to next analyze the expression of ZEB1 and its two splice variants, Zfhep1 and Zfhep2, in both lymph node and spleen. We demonstrated that ZEB1 splice-variants are differentially expressed; severity of EAE and higher IL2 levels were associated with down-regulation of Zfhep1 and up-regulation of Zfhep2. Conclusions/Significance We speculate that the balance between splice-variants of ZEB1 could influence the regulation of EAE. Further functional studies of ZEB1 and the splice-variants may unravel novel pathways contributing to MS pathogenesis and inflammation in general.


Journal of Immunology | 2008

Vra4 congenic rats with allelic differences in the class II transactivator gene display altered susceptibility to experimental autoimmune encephalomyelitis.

Karin Harnesk; Maria Swanberg; Johan Öckinger; Margarita Diez; Olle Lidman; Erik Wallström; Anna Lobell; Tomas Olsson; Fredrik Piehl

Presentation of Ag bound to MHC class II (MHC II) molecules to CD4+ T cells is a key event in adaptive immune responses. Genetic differences in MHC II expression in the rat CNS were recently positioned to allelic variability in the CIITA gene (Mhc2ta), located within the Vra4 locus on rat chromosome 10. In this study, we have examined reciprocal Vra4-congenic strains on the DA and PVGav1 backgrounds, respectively. After experimental nerve injury the strain-specific MHC II expression on microglia was reversed in the congenic strains. Similar findings were obtained after intraparenchymal injection of IFN-γ in the brain. Expression of MHC class II was also lower on B cells and dendritic cells from the DA.PVGav1-Vra4- congenic strain compared with DA rats after in vitro stimulation with IFN-γ. We next explored whether Vra4 may affect the outcome of experimental autoimmune disease. In experimental autoimmune encephalomyelitis induced by immunization with myelin oligodendrocyte glycoprotein, DA.PVGav1-Vra4 rats displayed a lower disease incidence and milder disease course compared with DA, whereas both PVGav1 and PVGav1.DA-Vra4 rats were completely protected. These results demonstrate that naturally occurring allelic differences in Mhc2ta have profound effects on the quantity of MHC II expression in the CNS and on immune cells and that this genetic variability also modulates susceptibility to autoimmune neuroinflammation.


Genetics | 2006

Definition of a 1.06-Mb region linked to neuroinflammation in humans, rats and mice.

Johan Öckinger; Pablo Serrano-Fernández; Steffen Möller; Saleh M. Ibrahim; Tomas Olsson; Maja Jagodic

Unbiased identification of susceptibility genes might provide new insights into pathogenic mechanisms that govern complex inflammatory diseases such as multiple sclerosis. In this study we fine mapped Eae18a, a region on rat chromosome 10 that regulates experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. We utilized two independent approaches: (1) in silico mapping based on sequence similarity between human multiple sclerosis susceptibility regions and rodent EAE quantitative trait loci and (2) linkage mapping in an F10 (DA × PVG.AV1) rat advanced intercrossed line. The linkage mapping defines Eae18a to a 5-Mb region, which overlaps one intergenomic consensus region identified in silico. The combined approach confirms experimentally, for the first time, the accuracy of the in silico method. Moreover, the shared intersection between the results of both mapping techniques defines a 1.06-Mb region containing 13 candidate genes for the regulation of neuroinflammation in humans, rats, and mice.

Collaboration


Dive into the Johan Öckinger's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Tomas Olsson

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Johan Grunewald

Karolinska University Hospital

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hans Lassmann

Medical University of Vienna

View shared research outputs
Researchain Logo
Decentralizing Knowledge