Amin Katouzian
IBM
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amin Katouzian.
Medical Image Analysis | 2013
Hortense A. Kirisli; Michiel Schaap; Coert Metz; Anoeshka S. Dharampal; W. B. Meijboom; S. L. Papadopoulou; Admir Dedic; Koen Nieman; M. A. de Graaf; M. F. L. Meijs; M. J. Cramer; Alexander Broersen; Suheyla Cetin; Abouzar Eslami; Leonardo Flórez-Valencia; Kuo-Lung Lor; Bogdan J. Matuszewski; I. Melki; B. Mohr; Ilkay Oksuz; Rahil Shahzad; Chunliang Wang; Pieter H. Kitslaar; Gözde B. Ünal; Amin Katouzian; Maciej Orkisz; Chung-Ming Chen; Frédéric Precioso; Laurent Najman; S. Masood
Though conventional coronary angiography (CCA) has been the standard of reference for diagnosing coronary artery disease in the past decades, computed tomography angiography (CTA) has rapidly emerged, and is nowadays widely used in clinical practice. Here, we introduce a standardized evaluation framework to reliably evaluate and compare the performance of the algorithms devised to detect and quantify the coronary artery stenoses, and to segment the coronary artery lumen in CTA data. The objective of this evaluation framework is to demonstrate the feasibility of dedicated algorithms to: (1) (semi-)automatically detect and quantify stenosis on CTA, in comparison with quantitative coronary angiography (QCA) and CTA consensus reading, and (2) (semi-)automatically segment the coronary lumen on CTA, in comparison with experts manual annotation. A database consisting of 48 multicenter multivendor cardiac CTA datasets with corresponding reference standards are described and made available. The algorithms from 11 research groups were quantitatively evaluated and compared. The results show that (1) some of the current stenosis detection/quantification algorithms may be used for triage or as a second-reader in clinical practice, and that (2) automatic lumen segmentation is possible with a precision similar to that obtained by experts. The framework is open for new submissions through the website, at http://coronary.bigr.nl/stenoses/.
international conference of the ieee engineering in medicine and biology society | 2012
Amin Katouzian; Elsa D. Angelini; Stéphane G. Carlier; Jasjit S. Suri; Nassir Navab; Andrew F. Laine
Over the past two decades, intravascular ultrasound (IVUS) image segmentation has remained a challenge for researchers while the use of this imaging modality is rapidly growing in catheterization procedures and in research studies. IVUS provides cross-sectional grayscale images of the arterial wall and the extent of atherosclerotic plaques with high spatial resolution in real time. In this paper, we review recently developed image processing methods for the detection of media-adventitia and luminal borders in IVUS images acquired with different transducers operating at frequencies ranging from 20 to 45 MHz. We discuss methodological challenges, lack of diversity in reported datasets, and weaknesses of quantification metrics that make IVUS segmentation still an open problem despite all efforts. In conclusion, we call for a common reference database, validation metrics, and ground-truth definition with which new and existing algorithms could be benchmarked.
Medical Image Analysis | 2013
Abouzar Eslami; Athanasios Karamalis; Amin Katouzian; Nassir Navab
In this paper, a new segmentation framework with prior knowledge is proposed and applied to the left ventricles in cardiac Cine MRI sequences. We introduce a new formulation of the random walks method, coined as guided random walks, in which prior knowledge is integrated seamlessly. In comparison with existing approaches that incorporate statistical shape models, our method does not extract any principal model of the shape or appearance of the left ventricle. Instead, segmentation is accompanied by retrieving the closest subject in the database that guides the segmentation the best. Using this techniques, rare cases can also effectively exploit prior knowledge from few samples in training set. These cases are usually disregarded in statistical shape models as they are outnumbered by frequent cases (effect of class population). In the worst-case scenario, if there is no matching case in the database to guide the segmentation, performance of the proposed method reaches to the conventional random walks, which is shown to be accurate if sufficient number of seeds is provided. There is a fast solution to the proposed guided random walks by using sparse linear matrix operations and the whole framework can be seamlessly implemented in a parallel architecture. The method has been validated on a comprehensive clinical dataset of 3D+t short axis MR images of 104 subjects from 5 categories (normal, dilated left ventricle, ventricular hypertrophy, recent myocardial infarction, and heart failure). The average segmentation errors were found to be 1.54 mm for the endocardium and 1.48 mm for the epicardium. The method was validated by measuring different algorithmic and physiologic indices and quantified with manual segmentation ground truths, provided by a cardiologist.
international conference of the ieee engineering in medicine and biology society | 2006
Amin Katouzian; Ashwin Prakash; Elisa E. Konofagou
In this paper we present a new automated method for detecting endocardial and epicardial borders in the left (LV) and right ventricles (RV) of the human heart. Our approach relies on morphological operations on both binary and grayscale images. First, the standard power-law transformation is applied on the image. Then, a region of interest (ROI) is selected semi-automatically, followed by automated endocardial and epicardial border extraction based on the selected ROI. In order to get the endocardial contour, the transformed image is thresholded and the maximum area, which indicates the cavity, is selected. Finally, the edge detection is performed and the papillary muscles (PMs) are excluded via a convex-hull method. The epicardial boundary is delineated through a threshold decomposition opening (TDO) approach along with morphological operations. The algorithm extracts the most precise myocardial and RV contours. Experimental results from three normal subjects are shown and quantitatively compared with manually traced contours by an expert. It is concluded that the method performs well in both endocardial and epicardial LV contouring as well as RV cavity detection
Medical imaging 2008 : Ultrasonic imaging and signal processing : 17-18 February 2008, San Diego, California, USA ; Proceedings of SPIE, vol. 6920 | 2008
Amin Katouzian; Babak Baseri; Elisa E. Konofagou; Andrew F. Laine
Intravascular ultrasound (IVUS) has been proven a reliable imaging modality that is widely employed in cardiac interventional procedures. It can provide morphologic as well as pathologic information on the occluded plaques in the coronary arteries. In this paper, we present a new technique using wavelet packet analysis that differentiates between blood and non-blood regions on the IVUS images. We utilized the multi-channel texture segmentation algorithm based on the discrete wavelet packet frames (DWPF). A k-mean clustering algorithm was deployed to partition the extracted textural features into blood and non-blood in an unsupervised fashion. Finally, the geometric and statistical information of the segmented regions was used to estimate the closest set of pixels to the lumen border and a spline curve was fitted to the set. The presented algorithm may be helpful in delineating the lumen border automatically and more reliably prior to the process of plaque characterization, especially with 40 MHz transducers, where appearance of the red blood cells renders the border detection more challenging, even manually. Experimental results are shown and they are quantitatively compared with manually traced borders by an expert. It is concluded that our two dimensional (2-D) algorithm, which is independent of the cardiac and catheter motions performs well in both in-vivo and in-vitro cases.
Biomedical Optics Express | 2017
Abhijit Guha Roy; Sailesh Conjeti; Sri Phani Krishna Karri; Debdoot Sheet; Amin Katouzian; Christian Wachinger; Nassir Navab
Optical coherence tomography (OCT) is used for non-invasive diagnosis of diabetic macular edema assessing the retinal layers. In this paper, we propose a new fully convolutional deep architecture, termed ReLayNet, for end-to-end segmentation of retinal layers and fluid masses in eye OCT scans. ReLayNet uses a contracting path of convolutional blocks (encoders) to learn a hierarchy of contextual features, followed by an expansive path of convolutional blocks (decoders) for semantic segmentation. ReLayNet is trained to optimize a joint loss function comprising of weighted logistic regression and Dice overlap loss. The framework is validated on a publicly available benchmark dataset with comparisons against five state-of-the-art segmentation methods including two deep learning based approaches to substantiate its effectiveness.
IEEE Transactions on Biomedical Engineering | 2012
Amin Katouzian; Athanasios Karamalis; Debdoot Sheet; Elisa E. Konofagou; Babak Baseri; Stéphane G. Carlier; Abouzar Eslami; Andreas König; Nassir Navab; Andrew F. Laine
Intravascular ultrasound (IVUS) is the predominant imaging modality in the field of interventional cardiology that provides real-time cross-sectional images of coronary arteries and the extent of atherosclerosis. Due to heterogeneity of lesions and stringent spatial/spectral behavior of tissues, atherosclerotic plaque characterization has always been a challenge and still is an open problem. In this paper, we present a systematic framework from in vitro data collection, histology preparation, IVUS-histology registration along with matching procedure, and finally a robust texture-derived unsupervised atherosclerotic plaque labeling. We have performed our algorithm on in vitro and in vivo images acquired with single-element 40 MHz and 64-elements phased array 20 MHz transducers, respectively. In former case, we have quantified results by local contrasting of constructed tissue colormaps with corresponding histology images employing an independent expert and in the latter case, virtual histology images have been utilized for comparison. We tackle one of the main challenges in the field that is the reliability of tissues behind arc of calcified plaques and validate the results through a novel random walks framework by incorporating underlying physics of ultrasound imaging. We conclude that proposed framework is a formidable approach for retrieving imperative information regarding tissues and building a reliable training dataset for supervised classification and its extension for in vivo applications.
international symposium on biomedical imaging | 2008
Amin Katouzian; Babak Baseri; Elisa E. Konofagou; Andrew F. Laine
High-frequency ultrasound transducers are being widely used to generate high resolution, real time, cross-sectional images of the coronary arteries. In this paper, we present a robust unsupervised texture-derived technique based on multi-channel wavelet frames to delineate atherosclerotic plaque compositions. The intravascular ultrasound (IVUS) signals were acquired from coronary arteries dissected from 32 diseased cadaver hearts employing 40 MHz mechanically rotating, single-element transducers. The wavelet packet representations were classified using a K- means clustering algorithm to generate IVUS-histology color maps (IV-HCMs) and categorize tissues in lipidic, fibrotic and calcified. Finally, two independent observers evaluated the results contrasting the histology images corresponding to the IV-HCMs. Our results show that the proposed algorithm may have great potential as an alternative to existing spectrum-based classification techniques.
medical image computing and computer assisted intervention | 2017
Abhijit Guha Roy; Sailesh Conjeti; Debdoot Sheet; Amin Katouzian; Nassir Navab; Christian Wachinger
Training deep fully convolutional neural networks (F-CNNs) for semantic image segmentation requires access to abundant labeled data. While large datasets of unlabeled image data are available in medical applications, access to manually labeled data is very limited. We propose to automatically create auxiliary labels on initially unlabeled data with existing tools and to use them for pre-training. For the subsequent fine-tuning of the network with manually labeled data, we introduce error corrective boosting (ECB), which emphasizes parameter updates on classes with lower accuracy. Furthermore, we introduce SkipDeconv-Net (SD-Net), a new F-CNN architecture for brain segmentation that combines skip connections with the unpooling strategy for upsampling. The SD-Net addresses challenges of severe class imbalance and errors along boundaries. With application to whole-brain MRI T1 scan segmentation, we generate auxiliary labels on a large dataset with FreeSurfer and fine-tune on two datasets with manual annotations. Our results show that the inclusion of auxiliary labels and ECB yields significant improvements. SD-Net segments a 3D scan in 7 secs in comparison to 30 hours for the closest multi-atlas segmentation method, while reaching similar performance. It also outperforms the latest state-of-the-art F-CNN models.
workshop on biomedical image registration | 2012
Amin Katouzian; Athanasios Karamalis; Jennifer Lisauskas; Abouzar Eslami; Nassir Navab
In this paper, for the first time, we present a systematic framework to register intravascular ultrasound (IVUS) images with histology correspondences. We deployed intermediate representations of images, generating segmentation masks corresponding to lumen and media-adventitia borders for both histology and IVUS images, incorporated into a non-rigid registration framework using discrete multi-labeling and approximate curvature penalty for smoothness regularization. The resulting deformation field was then applied to the original histology image to transfer it to IVUS coordinate system. Finally, the results were quantified on 14 cross sections of interest. The main contribution of this work is that the registered results could be used for systematic labeling of tissues, which ultimately will lead to reliable construction of training dataset for feature extraction and supervised classification of atherosclerotic tissues.