Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amina I. Pollard is active.

Publication


Featured researches published by Amina I. Pollard.


Science of The Total Environment | 2012

The effects of mountaintop mines and valley fills on the physicochemical quality of stream ecosystems in the central Appalachians: a review.

Michael B. Griffith; Susan B. Norton; Laurie C. Alexander; Amina I. Pollard; Stephen D. LeDuc

This review assesses the state of the science on the effects of mountaintop mines and valley fills (MTM-VF) on the physicochemical characteristics of streams in the central Appalachian coalfields of West Virginia, Kentucky, Virginia and Tennessee, USA. We focus on the impacts of mountaintop removal coal mining, which involves removing all - or some portion - of the top of a mountain or ridge to expose and mine one or more coal seams. Excess overburden is disposed in constructed fills in small valleys adjacent to the mining site. MTM-VF leachate persistently increases the downstream concentrations of major ions. Conductivity is a coarse measure of these ions, which are dominated by a distinct mixture of SO(4)(2-), HCO(3)(-), Ca(2+) and Mg(2+), that reflects their source, the oxidation of pyrite to form acid followed by neutralization of the acidity by carbonate minerals within the valley fills. This results in neutral to alkaline pHs, a range at which many metals are relatively insoluble. Other compounds within coal or overburden are solubilized and occur at elevated albeit lower concentrations, including K(+), Na(+), Cl(-), Se and Mn. In terms of physical characteristics, the valley fills act like headwater aquifers, baseflows increase in streams below valley fills and water temperatures exhibit reduced seasonal variation. Peak discharges may be increased in response to intense precipitation events, because of compaction of base surfaces of the MTM-VF areas, but newer approaches to reclamation reduce this compaction and may ameliorate these peak flows. Although the sedimentation pond is intended to capture fine particles that wash downstream from the valley fill, some studies found increased fine sediments in streams downstream from valley fills. However, a proportion of these fines may be eroded from stream banks rather than the valley fills. This is probably a result of the alterations in stream flows.


Integrated Environmental Assessment and Management | 2011

Incorporating traits in aquatic biomonitoring to enhance causal diagnosis and prediction

Joseph M. Culp; David G. Armanini; Michael J. Dunbar; Jessica M. Orlofske; N. LeRoy Poff; Amina I. Pollard; Adam G. Yates; Grant C. Hose

The linkage of trait responses to stressor gradients has potential to expand biomonitoring approaches beyond traditional taxonomically based assessments that identify ecological effect to provide a causal diagnosis. Traits-based information may have several advantages over taxonomically based methods. These include providing mechanistic linkages of biotic responses to environmental conditions, consistent descriptors or metrics across broad spatial scales, more seasonal stability compared with taxonomic measures, and seamless integration of traits-based analysis into assessment programs. A traits-based biomonitoring approach does not require a new biomonitoring framework, because contemporary biomonitoring programs gather the basic site-by-species composition matrices required to link community data to the traits database. Impediments to the adoption of traits-based biomonitoring relate to the availability, consistency, and applicability of existing trait data. For example, traits generalizations among taxa across biogeographical regions are rare, and no consensus exists relative to the required taxonomic resolution and methodology for traits assessment. Similarly, we must determine if traits form suites that are related to particular stressor effects, and whether significant variation of traits occurs among allopatric populations. Finally, to realize the potential of traits-based approaches in biomonitoring, a concerted effort to standardize terminology is required, along with the establishment of protocols to ease the sharing and merging of broad, geographical trait information.


Environmental Science & Technology | 2016

Continental-Scale Increase in Lake and Stream Phosphorus: Are Oligotrophic Systems Disappearing in the United States?

John L. Stoddard; John Van Sickle; Alan T. Herlihy; Janice Brahney; Steven G. Paulsen; David Peck; Richard M. Mitchell; Amina I. Pollard

We describe continental-scale increases in lake and stream total phosphorus (TP) concentrations, identified through periodic probability surveys of thousands of water bodies in the conterminous U.S. The increases, observed over the period 2000-2014 were most notable in sites in relatively undisturbed catchments and where TP was initially low (e.g., less than 10 μg L(-1)). Nationally, the percentage of stream length in the U.S. with TP ≤ 10 μg L(-1) decreased from 24.5 to 10.4 to 1.6% from 2004 to 2009 to 2014; the percentage of lakes with TP ≤ 10 μg L(-1) decreased from 24.9 to 6.7% between 2007 and 2012. Increasing TP concentrations appear to be ubiquitous, but their presence in undeveloped catchments suggests that they cannot be entirely attributed to either point or common non-point sources of TP.


GigaScience | 2017

LAGOS-NE: a multi-scaled geospatial and temporal database of lake ecological context and water quality for thousands of US lakes

Patricia A. Soranno; Linda C. Bacon; Michael Beauchene; Karen E. Bednar; Edward G. Bissell; Claire K. Boudreau; Marvin G. Boyer; Mary T. Bremigan; Stephen R. Carpenter; Jamie W. Carr; Kendra Spence Cheruvelil; Samuel T. Christel; Matt Claucherty; Sarah M. Collins; Joseph D. Conroy; John A. Downing; Jed Dukett; C. Emi Fergus; Christopher T. Filstrup; Clara Funk; María J. González; Linda Green; Corinna Gries; John D. Halfman; Stephen K. Hamilton; Paul C. Hanson; Emily Norton Henry; Elizabeth Herron; Celeste Hockings; James R. Jackson

Abstract Understanding the factors that affect water quality and the ecological services provided by freshwater ecosystems is an urgent global environmental issue. Predicting how water quality will respond to global changes not only requires water quality data, but also information about the ecological context of individual water bodies across broad spatial extents. Because lake water quality is usually sampled in limited geographic regions, often for limited time periods, assessing the environmental controls of water quality requires compilation of many data sets across broad regions and across time into an integrated database. LAGOS-NE accomplishes this goal for lakes in the northeastern-most 17 US states. LAGOS-NE contains data for 51 101 lakes and reservoirs larger than 4 ha in 17 lake-rich US states. The database includes 3 data modules for: lake location and physical characteristics for all lakes; ecological context (i.e., the land use, geologic, climatic, and hydrologic setting of lakes) for all lakes; and in situ measurements of lake water quality for a subset of the lakes from the past 3 decades for approximately 2600–12 000 lakes depending on the variable. The database contains approximately 150 000 measures of total phosphorus, 200 000 measures of chlorophyll, and 900 000 measures of Secchi depth. The water quality data were compiled from 87 lake water quality data sets from federal, state, tribal, and non-profit agencies, university researchers, and citizen scientists. This database is one of the largest and most comprehensive databases of its type because it includes both in situ measurements and ecological context data. Because ecological context can be used to study a variety of other questions about lakes, streams, and wetlands, this database can also be used as the foundation for other studies of freshwaters at broad spatial and ecological scales.


Freshwater Science | 2014

Classifying lakes to improve precision of nutrient–chlorophyll relationships

Lester L. Yuan; Amina I. Pollard

Abstract: Accurate and precise estimates of relationships between stressors and environmental responses can inform management decisions most usefully when models can be easily interpreted. Here, we describe an approach for classifying lakes and reservoirs that can improve estimates of the relationships between total P (TP) and chlorophyll a (chl a) concentration, while preserving a model that can be readily interpreted by environmental managers and stakeholders. We selected classification variables statistically with a classification and regression tree in which relationships between TP and chl a were the terminal nodes of the tree. We developed a set of classification trees from bootstrapped replicates of the calibration data to explore a broader range of possible trees. We chose a final tree based on its predictive performance with a validation data set. The total N:TP mass ratio was the classification variable selected most frequently from a broad array of biological, chemical, and physical candidate classification variables. Relationships between TP and chl a in the resulting lake classes provided predictions that were substantially more accurate than predictions computed using nutrient ecoregions based on aggregations of Omernik Level III ecoregions, but predictions from a random forest model that averaged an ensemble of trees were even more accurate. Thus, the classification approach presented here sacrifices a small amount of predictive accuracy to retain a tree structure that is readily interpretable.


Journal of The American Water Resources Association | 2018

Physical and Chemical Connectivity of Streams and Riparian Wetlands to Downstream Waters: A Synthesis

Ken M. Fritz; Kate A. Schofield; Laurie C. Alexander; Michael G. McManus; Heather E. Golden; Charles R. Lane; William G. Kepner; Stephen D. LeDuc; Julie E. DeMeester; Amina I. Pollard

Streams, riparian areas, floodplains, alluvial aquifers and downstream waters (e.g., large rivers, lakes, oceans) are interconnected by longitudinal, lateral, and vertical fluxes of water, other materials and energy. Collectively, these interconnected waters are called fluvial hydrosystems. Physical and chemical connectivity within fluvial hydrosystems is created by the transport of nonliving materials (e.g., water, sediment, nutrients, contaminants) which either do or do not chemically change (chemical and physical connections, respectively). A substantial body of evidence unequivocally demonstrates physical and chemical connectivity between streams and riparian wetlands and downstream waters. Streams and riparian wetlands are structurally connected to downstream waters through the network of continuous channels and floodplain form that make these systems physically contiguous, and the very existence of these structures provides strong geomorphologic evidence for connectivity. Functional connections between streams and riparian wetlands and their downstream waters vary geographically and over time, based on proximity, relative size, environmental setting, material disparity, and intervening units. Because of the complexity and dynamic nature of connections among fluvial hydrosystem units, a complete accounting of the physical and chemical connections and their consequences to downstream waters should aggregate over multiple years to decades.


Journal of The American Water Resources Association | 2018

Biota connect aquatic habitats throughout freshwater ecosystem mosaics

Kate A. Schofield; Laurie C. Alexander; Caroline E. Ridley; Melanie K. Vanderhoof; Ken M. Fritz; Bradley C. Autrey; Julie E. DeMeester; William G. Kepner; Charles R. Lane; Scott G. Leibowitz; Amina I. Pollard

Freshwater ecosystems are linked at various spatial and temporal scales by movements of biota adapted to life in water. We review the literature on movements of aquatic organisms that connect different types of freshwater habitats, focusing on linkages from streams and wetlands to downstream waters. Here, streams, wetlands, rivers, lakes, ponds, and other freshwater habitats are viewed as dynamic freshwater ecosystem mosaics (FEMs) that collectively provide the resources needed to sustain aquatic life. Based on existing evidence, it is clear that biotic linkages throughout FEMs have important consequences for biological integrity and biodiversity. All aquatic organisms move within and among FEM components, but differ in the mode, frequency, distance, and timing of their movements. These movements allow biota to recolonize habitats, avoid inbreeding, escape stressors, locate mates, and acquire resources. Cumulatively, these individual movements connect populations within and among FEMs and contribute to local and regional diversity, resilience to disturbance, and persistence of aquatic species in the face of environmental change. Thus, the biological connections established by movement of biota among streams, wetlands, and downstream waters are critical to the ecological integrity of these systems. Future research will help advance our understanding of the movements that link FEMs and their cumulative effects on downstream waters.


Journal of The American Water Resources Association | 2018

Featured collection introduction: Connectivity of streams and wetlands to downstream waters

Laurie C. Alexander; Ken M. Fritz; Kate A. Schofield; Bradley C. Autrey; Julie E. DeMeester; Heather E. Golden; David C. Goodrich; William G. Kepner; Hadas Raanan Kiperwas Kiperwas; Charles R. Lane; Stephen D. LeDuc; Scott G. Leibowitz; Michael G. McManus; Amina I. Pollard; Caroline E. Ridley; Melanie K. Vanderhoof; Parker J. Wigington

Connectivity is a fundamental but highly dynamic property of watersheds. Variability in the types and degrees of aquatic ecosystem connectivity presents challenges for researchers and managers seeking to accurately quantify its effects on critical hydrologic, biogeochemical, and biological processes. However, protecting natural gradients of connectivity is key to protecting the range of ecosystem services that aquatic ecosystems provide. In this featured collection, we review the available evidence on connections and functions by which streams and wetlands affect the integrity of downstream waters such as large rivers, lakes, reservoirs, and estuaries. The reviews in this collection focus on the types of waters whose protections under the U.S. Clean Water Act have been called into question by U.S. Supreme Court cases. We synthesize 40+ years of research on longitudinal, lateral, and vertical fluxes of energy, material, and biota between aquatic ecosystems included within the Act’s frame of reference. Many questions about the roles of streams and wetlands in sustaining downstream water integrity can be answered from currently available literature, and emerging research is rapidly closing data gaps with exciting new insights into aquatic connectivity and function at local, watershed, and regional scales. Synthesis of foundational and emerging research is needed to support science-based efforts to provide safe, reliable sources of fresh water for present and future generations. (KEY TERMS: ecological integrity; river networks; streams; wetlands; floodplains; riparian areas; watersheds; U.S. Clean Water Act.) Alexander, Laurie C., Ken M. Fritz, Kate A. Schofield, Bradley C. Autrey, Julie E. DeMeester, Heather E. Golden, David C. Goodrich, William G. Kepner, Hadas R. Kiperwas, Charles R. Lane, Stephen D. LeDuc, Scott G. Leibowitz, Michael G. McManus, Amina I. Pollard, Caroline E. Ridley, Melanie K. Vanderhoof, and Parker J. Wigington, Jr., 2018. Featured Collection Introduction: Connectivity of Streams and Wetlands to Downstream Waters. Journal of the American Water Resources Association (JAWRA) 54(2): 287–297. https://doi.org/10.1111/ 1752-1688.12630 Paper No. JAWRA-17-0107-P of the Journal of the American Water Resources Association (JAWRA). Received July 24, 2017; accepted January 22, 2018.


Environmental Toxicology and Chemistry | 2009

Using propensity scores to estimate the effects of insecticides on stream invertebrates from observational data

Lester L. Yuan; Amina I. Pollard; Daren M. Carlisle

Analyses of observational data can provide insights into relationships between environmental conditions and biological responses across a broader range of natural conditions than experimental studies, potentially complementing insights gained from experiments. However, observational data must be analyzed carefully to minimize the likelihood that confounding variables bias observed relationships. Propensity scores provide a robust approach for controlling for the effects of measured confounding variables when analyzing observational data. Here, we use propensity scores to estimate changes in mean invertebrate taxon richness in streams that have experienced insecticide concentrations that exceed aquatic life use benchmark concentrations. A simple comparison of richness in sites exposed to elevated insecticides with those that were not exposed suggests that exposed sites had on average 6.8 fewer taxa compared to unexposed sites. The presence of potential confounding variables makes it difficult to assert a causal relationship from this simple comparison. After controlling for confounding factors using propensity scores, the difference in richness between exposed and unexposed sites was reduced to 4.1 taxa, a difference that was still statistically significant. Because the propensity score analysis controlled for the effects of a wide variety of possible confounding variables, we infer that the change in richness observed in the propensity score analysis was likely caused by insecticide exposure.


Limnology and Oceanography | 2018

Fewer blue lakes and more murky lakes across the continental U.S.: Implications for planktonic food webs

Dina M. Leech; Amina I. Pollard; Stephanie G. Labou; Stephanie E. Hampton

Elevated allochthonous inputs of organic matter are increasingly recognized as a driver of ecosystem change in lakes, particularly when concurrent with eutrophication. Evaluation of lakes in a nutrient-color paradigm (i.e., based on total phosphorus and true color) enables a more robust approach to research and management. To assess temporal and spatial patterns in nutrient-color status for U.S. lakes and associated food web attributes, we analyzed the U.S. Environmental Protection Agency’s National Lakes Assessment (NLA) data. With 1000+ lakes sampled in 2007 and 2012 in a stratified random sampling design, the NLA enables rigorous assessment of lake condition across the continental U.S. We demonstrate that many U.S. lakes are simultaneously experiencing eutrophication and brownification to produce an abundance of “murky” lakes. Overall, “blue” lakes decreased by ~ 18% (46% of lakes in 2007 to 28% in 2012) while “murky” lakes increased by almost 12% (24% of lakes in 2007 to 35.4% in 2012). No statistical differences were observed in the proportions of “green” or “brown” lakes. Regionally, murky lakes significantly increased in the Northern Appalachian, Southern Plains, and Xeric ecoregions. Murky lakes exhibited the highest epilimnetic chlorophyll a concentrations, cyanobacterial densities, and microcystin concentrations. Total zooplankton biomass was also highest in murky lakes, primarily due to increased rotifer and copepod biomass. However, zooplankton : phytoplankton biomass ratios were low, suggesting reduced energy transfer to higher trophic levels. These results emphasize that many lakes in the U.S. are simultaneously “greening” and “browning”, with potentially negative consequences for water quality and food web structure.

Collaboration


Dive into the Amina I. Pollard's collaboration.

Top Co-Authors

Avatar

Lester L. Yuan

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Laurie C. Alexander

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Kate A. Schofield

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Ken M. Fritz

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Charles R. Lane

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Richard M. Mitchell

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

Stephen D. LeDuc

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar

William G. Kepner

United States Environmental Protection Agency

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge