Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amine Noueiry is active.

Publication


Featured researches published by Amine Noueiry.


Journal of Virology | 2003

Host factors in positive-strand RNA virus genome replication.

Paul Ahlquist; Amine Noueiry; Wai-Ming Lee; David B. Kushner; Billy T. Dye

All viruses are gene poor relative to their hosts: even the largest viral genomes only encode hundreds of genes, while those of host cells typically encode tens of thousands of genes. Thus, most steps in virus infection involve interactions between relatively few different types of viral components and much more complex pools of host factors. This sea of host factors represents both the essential milieu to which viruses must adapt for survival and a tremendous, manipulatable resource for gene-poor viruses. Accordingly, host factors play important roles in most steps of viral infection, and identifying such host factors and their contributions has long been recognized as an important frontier. The continuing emergence of close integration between viral and host functions in infection suggests moving beyond separate views of virus and host to a more holistic view of the virus-infected cell as a unified entity that constitutes the functional unit of infection. One area in which the importance of host factors is increasingly emerging is the replication of positive-strand RNA viruses. Positive-strand RNA viruses encompass over one-third of all virus genera and include numerous pathogens, such as the severe acute respiratory syndrome coronavirus SARS, hepatitis C virus (HCV), and many of the viruses on the U.S. Health and Human Services Department Select List of potential bioterrorism agents. Host factors participate in most, if not all, steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Moreover, host factors are targeted by positive-strand RNA viruses to modulate host gene expression and defenses. This review focuses on host factors involved in positivestrand RNA virus genome replication. The evidence for such host factor involvement has come from varied genetic and biochemical approaches (15). These include, among others, studies based on the varying permissiveness of some cell types and extracts for RNA replication (2, 3, 4, 19); identification of many host proteins that interact with viral genomic RNAs or replication proteins and, in some cases, have been functionally linked to replication (5, 18, 27, 35, 37, 40); and mutational screens in genetic model systems, such as Arabidopsis thaliana (17, 39) and the yeast Saccharomyces cerevisiae (8, 11, 16, 23, 38). Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the complex for RNA synthesis, and other steps. Each of these virushost interactions may contribute to the host specificity, tissue specificity, or pathology of infections. Each such virus-host interaction also represents a potential target for virus control or for optimization to improve beneficial uses of viruses and their components. Positive-strand RNA viruses can be divided into a number of superfamilies defined by distinguishable RNA replication genes and features (41). Nevertheless, the RNA replication mechanisms of these viruses share sufficient similarities to make it reasonable to discuss their replication as a class and to attempt to draw general lessons by comparing examples from different superfamilies. As discussed further below, a few of the common features shared by positive-strand RNA viruses are the need to coordinate use of the infecting viral genomic RNA as a template for translation and replication, assembly of replication complexes on intracellular membranes, and production of 10- to 100-fold excesses of positive- over negativestrand RNA. A simplified general scheme for RNA replication by positive-strand RNA viruses is shown in Fig. 1. Below we discuss the involvement of host factors in the various stages of this RNA replication process, using examples from a number of viruses. We regret that space limitations do not allow us to cite all of the work being done in this exciting area.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus

David B. Kushner; Brett D. Lindenbach; Valery Z. Grdzelishvili; Amine Noueiry; Scott M. Paul; Paul Ahlquist

Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps. To more globally and systematically identify such host factors, we used engineered BMV derivatives to assay viral RNA replication in each strain of an ordered, genome-wide set of yeast single-gene deletion mutants. Each deletion strain was transformed to express BMV replicase proteins and a BMV RNA replication template with the capsid gene replaced by a luciferase reporter. Luciferase expression, which is dependent on viral RNA replication and RNA-dependent mRNA synthesis, was measured in intact yeast cells. Approximately 4,500 yeast deletion strains (≈80% of yeast genes) were screened in duplicate and selected strains analyzed further. This functional genomics approach revealed nearly 100 genes whose absence inhibited or stimulated BMV RNA replication and/or gene expression by 3- to >25-fold. Several of these genes were shown previously to function in BMV replication, validating the approach. Newly identified genes include some in RNA, protein, or membrane modification pathways and genes of unknown function. The results further illuminate virus and cell pathways. Further refinement of virus screening likely will reveal contributions from additional host genes.


Proceedings of the National Academy of Sciences of the United States of America | 2009

Translation and replication of hepatitis C virus genomic RNA depends on ancient cellular proteins that control mRNA fates.

Nicoletta Scheller; Leonardo Bruno Mina; Rui Pedro Galão; Ashwin Chari; Mireia Giménez-Barcons; Amine Noueiry; Utz Fischer; Andreas Meyerhans; Juana Díez

Inevitably, viruses depend on host factors for their multiplication. Here, we show that hepatitis C virus (HCV) RNA translation and replication depends on Rck/p54, LSm1, and PatL1, which regulate the fate of cellular mRNAs from translation to degradation in the 5′-3′-deadenylation-dependent mRNA decay pathway. The requirement of these proteins for efficient HCV RNA translation was linked to the 5′ and 3′ untranslated regions (UTRs) of the viral genome. Furthermore, LSm1–7 complexes specifically interacted with essential cis-acting HCV RNA elements located in the UTRs. These results bridge HCV life cycle requirements and highly conserved host proteins of cellular mRNA decay. The previously described role of these proteins in the replication of 2 other positive-strand RNA viruses, the plant brome mosaic virus and the bacteriophage Qß, pinpoint a weak spot that may be exploited to generate broad-spectrum antiviral drugs.


Journal of Virology | 2001

Brome Mosaic Virus Protein 1a Recruits Viral RNA2 to RNA Replication through a 5′ Proximal RNA2 Signal

Jianbo Chen; Amine Noueiry; Paul Ahlquist

ABSTRACT Brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, encodes two RNA replication factors. Membrane-associated 1a protein contains a helicase-like domain and RNA capping functions. 2a, which is targeted to membranes by 1a, contains a central polymerase-like domain. In the absence of 2a and RNA replication, 1a acts through an intergenic replication signal in BMV genomic RNA3 to stabilize RNA3 and induce RNA3 to associate with cellular membrane. Multiple results imply that 1a-induced RNA3 stabilization reflects interactions involved in recruiting RNA3 templates into replication. To determine if 1a had similar effects on another BMV RNA replication template, we constructed a plasmid expressing BMV genomic RNA2 in vivo. In vivo-expressed RNA2 templates were replicated upon expression of 1a and 2a. In the absence of 2a, 1a stabilized RNA2 and induced RNA2 to associate with membrane. Deletion analysis demonstrated that 1a-induced membrane association of RNA2 was mediated by sequences in the 5′-proximal third of RNA2. The RNA2 5′ untranslated region was sufficient to confer 1a-induced membrane association on a nonviral RNA. However, sequences in the N-terminal region of the 2a open reading frame enhanced 1a responsiveness of RNA2 and a chimeric RNA. A 5′-terminal RNA2 stem-loop important for RNA2 replication was essential for 1a-induced membrane association of RNA2 and, like the 1a-responsive RNA3 intergenic region, contained a required box B motif corresponding to the TΨC stem-loop of host tRNAs. The level of 1a-induced membrane association of various RNA2 mutants correlated well with their abilities to serve as replication templates. These results support and expand the conclusion that 1a-induced BMV RNA stabilization and membrane association reflect early, 1a-mediated steps in viral RNA replication.


Molecular and Cellular Biology | 2003

Yeast Lsm1p-7p/Pat1p Deadenylation-Dependent mRNA-Decapping Factors Are Required for Brome Mosaic Virus Genomic RNA Translation

Amine Noueiry; Juana Díez; Shaun P. Falk; Jianbo Chen; Paul Ahlquist

ABSTRACT Previously, we used the ability of the higher eukaryotic positive-strand RNA virus brome mosaic virus (BMV) to replicate in yeast to show that the yeast LSM1 gene is required for recruiting BMV RNA from translation to replication. Here we extend this observation to show that Lsm1p and other components of the Lsm1p-Lsm7p/Pat1p deadenylation-dependent mRNA decapping complex were also required for translating BMV RNAs. Inhibition of BMV RNA translation was selective, with no effect on general cellular translation. We show that viral genomic RNAs suitable for RNA replication were already distinguished from nonreplication templates at translation, well before RNA recruitment to replication. Among mRNA turnover pathways, only factors specific for deadenylated mRNA decapping were required for BMV RNA translation. Dependence on these factors was not only a consequence of the nonpolyadenylated nature of BMV RNAs but also involved the combined effects of the viral 5′ and 3′ noncoding regions and 2a polymerase open reading frame. High-resolution sucrose density gradient analysis showed that, while mutating factors in the Lsm1p-7p/Pat1p complex completely inhibited viral RNA translation, the levels of viral RNA associated with ribosomes were only slightly reduced in mutant yeast. This polysome association was further verified by using a conditional allele of essential translation initiation factor PRT1, which markedly decreased polysome association of viral genomic RNA in the presence or absence of an LSM7 mutation. Together, these results show that a defective Lsm1p-7p/Pat1p complex inhibits BMV RNA translation primarily by stalling or slowing the elongation of ribosomes along the viral open reading frame. Thus, factors in the Lsm1p-7p/Pat1p complex function not only in mRNA decapping but also in translation, and both translation and recruitment of BMV RNAs to viral RNA replication are regulated by a cell pathway that transfers mRNAs from translation to degradation.


Journal of Virology | 2007

Interactions between Brome Mosaic Virus RNAs and Cytoplasmic Processing Bodies

Carla Beckham; Heather R. Light; T. Amar Nissan; Paul Ahlquist; Roy Parker; Amine Noueiry

ABSTRACT Cytoplasmic processing bodies are sites where nontranslating mRNAs accumulate for different fates, including decapping and degradation, storage, or returning to translation. Previous work has also shown that the Lsm1-7p complex, Dhh1p, and Pat1p, which are all components of P bodies, are required for translation and subsequent recruitment to replication of the plant virus brome mosaic virus (BMV) genomic RNAs when replication is reproduced in yeast cells. To better understand the role of P bodies in BMV replication, we examined the subcellular locations of BMV RNAs in yeast cells. We observed that BMV genomic RNA2 and RNA3 accumulated in P bodies in a manner dependent on cis-acting RNA replication signals, which also directed nonviral RNAs to P bodies. Furthermore, the viral RNA-dependent RNA polymerase coimmunoprecipitates and shows partial colocalization with the P-body component Lsm1p. These observations suggest that the accumulation of BMV RNAs in P bodies may be an important step in RNA replication complex assembly for BMV, and possibly for other positive-strand RNA viruses.


Journal of Virology | 2006

Host Deadenylation-Dependent mRNA Decapping Factors Are Required for a Key Step in Brome Mosaic Virus RNA Replication

Antonio Mas; Isabel Alves-Rodrigues; Amine Noueiry; Paul Ahlquist; Juana Díez

ABSTRACT The genomes of positive-strand RNA [(+)RNA] viruses perform two mutually exclusive functions: they act as mRNAs for the translation of viral proteins and as templates for viral replication. A universal key step in the replication of (+)RNA viruses is the coordinated transition of the RNA genome from the cellular translation machinery to the viral replication complex. While host factors are involved in this step, their nature is largely unknown. By using the ability of the higher eukaryotic (+)RNA virus brome mosaic virus (BMV) to replicate in yeast, we previously showed that the host Lsm1p protein is required for efficient recruitment of BMV RNA from translation to replication. Here we show that in addition to Lsm1p, all tested components of the Lsm1p-7p/Pat1p/Dhh1p decapping activator complex, which functions in deadenylation-dependent decapping of cellular mRNAs, are required for BMV RNA recruitment for RNA replication. In contrast, other proteins of the decapping machinery, such as Edc1p and Edc2p from the deadenylation-dependent decapping pathway and Upf1p, Upf2p, and Upf3p from the deadenylation-independent decapping pathway, had no significant effects. The dependence of BMV RNA recruitment on the Lsm1p-7p/Pat1p/Dhh1p complex was linked exclusively to the 3′ noncoding region of the BMV RNA. Collectively, our results suggest that the Lsm1p-7p/Pat1p/Dhh1p complex that transfers cellular mRNAs from translation to degradation might act as a key regulator in the switch from BMV RNA translation to replication.


Journal of Virology | 2007

Identification of Novel Small-Molecule Inhibitors of West Nile Virus Infection

Amine Noueiry; Paul D. Olivo; Urszula Slomczynska; Yi Zhou; Ben Buscher; Brian J. Geiss; Michael Engle; Robert M. Roth; Kyung Min Chung; Melanie A. Samuel; Michael S. Diamond

ABSTRACT West Nile virus (WNV) has spread throughout the United States and Canada and now annually causes a clinical spectrum of human disease ranging from a self-limiting acute febrile illness to acute flaccid paralysis and lethal encephalitis. No therapy or vaccine is currently approved for use in humans. Using high-throughput screening assays that included a luciferase expressing WNV subgenomic replicon and an NS1 capture enzyme-linked immunosorbent assay, we evaluated a chemical library of over 80,000 compounds for their capacity to inhibit WNV replication. We identified 10 compounds with strong inhibitory activity against genetically diverse WNV and Kunjin virus isolates. Many of the inhibitory compounds belonged to a chemical family of secondary sulfonamides and have not been described previously to inhibit WNV or other related or unrelated viruses. Several of these compounds inhibited WNV infection in the submicromolar range, had selectivity indices of greater than 10, and inhibited replication of other flaviviruses, including dengue and yellow fever viruses. One of the most promising compounds, AP30451, specifically blocked translation of a yellow fever virus replicon but not a Sindbis virus replicon or an internal ribosome entry site containing mRNA. Overall, these compounds comprise a novel class of promising inhibitors for therapy against WNV and other flavivirus infections in humans.


Journal of Virology | 2003

An Alternate Pathway for Recruiting Template RNA to the Brome Mosaic Virus RNA Replication Complex

Jianbo Chen; Amine Noueiry; Paul Ahlquist

ABSTRACT The multidomain RNA replication protein 1a of brome mosaic virus (BMV), a positive-strand RNA virus in the alphavirus-like superfamily, plays key roles in assembly and function of the viral RNA replication complex. 1a, which encodes RNA capping and helicase-like domains, localizes to endoplasmic reticulum membranes, recruits BMV 2a polymerase and viral RNA templates, and forms membrane-bound, capsid-like spherules in which RNA replication occurs. cis-acting signals necessary and sufficient for RNA recruitment by 1a have been mapped in BMV genomic RNA2 and RNA3. Both signals comprise an extended stem-loop whose apex matches the conserved sequence and structure of the TΨC stem-loop in tRNAs (box B). Mutations show that this box B motif is crucial to 1a responsiveness of wild-type RNA2 and RNA3. We report here that, unexpectedly, some chimeric mRNAs expressing the 2a polymerase open reading frame from RNA2 were recruited by 1a to the replication complex and served as templates for negative-strand RNA synthesis, despite lacking the normally essential, box B-containing 5′ signal. Further studies showed that this template recruitment required high-efficiency translation of the RNA templates. Moreover, multiple small frameshifting insertion or deletion mutations throughout the N-terminal region of the open reading frame inhibited this template recruitment, while an in-frame insertion did not. Providing 2a in trans did not restore template recruitment of RNAs with frameshift mutations. Only those deletions in the N-terminal region of 2a that abolished 2a interaction with 1a abolished template recruitment of the RNA. These and other results indicate that this alternate pathway for 1a-dependent RNA recruitment involves 1a interaction with the translating mRNA via the 1a-interactive N-terminal region of the nascent 2a polypeptide. Interaction with nascent 2a also may be involved in 1a recruitment of 2a polymerase to membranes.


Biostatistics | 2004

Detecting differential gene expression with a semiparametric hierarchical mixture method

Michael A. Newton; Amine Noueiry; Deepayan Sarkar; Paul Ahlquist

Collaboration


Dive into the Amine Noueiry's collaboration.

Top Co-Authors

Avatar

Paul Ahlquist

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Jianbo Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Juana Díez

Pompeu Fabra University

View shared research outputs
Top Co-Authors

Avatar

Paul D. Olivo

Washington University in St. Louis

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Roy Parker

Howard Hughes Medical Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge