Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Paul Ahlquist is active.

Publication


Featured researches published by Paul Ahlquist.


Journal of Virology | 2003

Host factors in positive-strand RNA virus genome replication.

Paul Ahlquist; Amine Noueiry; Wai-Ming Lee; David B. Kushner; Billy T. Dye

All viruses are gene poor relative to their hosts: even the largest viral genomes only encode hundreds of genes, while those of host cells typically encode tens of thousands of genes. Thus, most steps in virus infection involve interactions between relatively few different types of viral components and much more complex pools of host factors. This sea of host factors represents both the essential milieu to which viruses must adapt for survival and a tremendous, manipulatable resource for gene-poor viruses. Accordingly, host factors play important roles in most steps of viral infection, and identifying such host factors and their contributions has long been recognized as an important frontier. The continuing emergence of close integration between viral and host functions in infection suggests moving beyond separate views of virus and host to a more holistic view of the virus-infected cell as a unified entity that constitutes the functional unit of infection. One area in which the importance of host factors is increasingly emerging is the replication of positive-strand RNA viruses. Positive-strand RNA viruses encompass over one-third of all virus genera and include numerous pathogens, such as the severe acute respiratory syndrome coronavirus SARS, hepatitis C virus (HCV), and many of the viruses on the U.S. Health and Human Services Department Select List of potential bioterrorism agents. Host factors participate in most, if not all, steps of positive-strand RNA virus infection, including entry, viral gene expression, virion assembly, and release. Moreover, host factors are targeted by positive-strand RNA viruses to modulate host gene expression and defenses. This review focuses on host factors involved in positivestrand RNA virus genome replication. The evidence for such host factor involvement has come from varied genetic and biochemical approaches (15). These include, among others, studies based on the varying permissiveness of some cell types and extracts for RNA replication (2, 3, 4, 19); identification of many host proteins that interact with viral genomic RNAs or replication proteins and, in some cases, have been functionally linked to replication (5, 18, 27, 35, 37, 40); and mutational screens in genetic model systems, such as Arabidopsis thaliana (17, 39) and the yeast Saccharomyces cerevisiae (8, 11, 16, 23, 38). Recent data show that host factors play important roles in assembling the viral RNA replication complex, selecting and recruiting viral RNA replication templates, activating the complex for RNA synthesis, and other steps. Each of these virushost interactions may contribute to the host specificity, tissue specificity, or pathology of infections. Each such virus-host interaction also represents a potential target for virus control or for optimization to improve beneficial uses of viruses and their components. Positive-strand RNA viruses can be divided into a number of superfamilies defined by distinguishable RNA replication genes and features (41). Nevertheless, the RNA replication mechanisms of these viruses share sufficient similarities to make it reasonable to discuss their replication as a class and to attempt to draw general lessons by comparing examples from different superfamilies. As discussed further below, a few of the common features shared by positive-strand RNA viruses are the need to coordinate use of the infecting viral genomic RNA as a template for translation and replication, assembly of replication complexes on intracellular membranes, and production of 10- to 100-fold excesses of positive- over negativestrand RNA. A simplified general scheme for RNA replication by positive-strand RNA viruses is shown in Fig. 1. Below we discuss the involvement of host factors in the various stages of this RNA replication process, using examples from a number of viruses. We regret that space limitations do not allow us to cite all of the work being done in this exciting area.


Molecular Cell | 2002

A positive-strand RNA virus replication complex parallels form and function of retrovirus capsids.

Michael P. Schwartz; Jianbo Chen; Michael Janda; Michael L. Sullivan; Johan den Boon; Paul Ahlquist

We show that brome mosaic virus (BMV) RNA replication protein 1a, 2a polymerase, and a cis-acting replication signal recapitulate the functions of Gag, Pol, and RNA packaging signals in conventional retrovirus and foamy virus cores. Prior to RNA replication, 1a forms spherules budding into the endoplasmic reticulum membrane, sequestering viral positive-strand RNA templates in a nuclease-resistant, detergent-susceptible state. When expressed, 2a polymerase colocalizes in these spherules, which become the sites of viral RNA synthesis and retain negative-strand templates for positive-strand RNA synthesis. These results explain many features of replication by numerous positive strand RNA viruses and reveal that these viruses, reverse transcribing viruses, and dsRNA viruses share fundamental similarities in replication and may have common evolutionary origins.


Proceedings of the National Academy of Sciences of the United States of America | 2008

MicroRNA 29c is down-regulated in nasopharyngeal carcinomas, up-regulating mRNAs encoding extracellular matrix proteins.

Srikumar Sengupta; Johan A. den Boon; I-How Chen; Michael A. Newton; Stephen A. Stanhope; Yu-Juen Cheng; Chien-Jen Chen; Allan Hildesheim; Bill Sugden; Paul Ahlquist

Using highly sensitive microarray-based procedures, we identified eight microRNAs (miRNAs) showing robust differential expression between 31 laser-capture-microdissected nasopharyngeal carcinomas (NPCs) and 10 normal healthy nasopharyngeal epithelial samples. In particular, miRNA mir-29c was expressed at one-fifth the levels in tumors as in normal epithelium. In NPC tumors, the lower mir-29c levels correlated with higher levels of multiple mRNAs whose 3′ UTRs can bind mir-29c at target sequences conserved across many vertebrates. In cultured cells, introduction of mir-29c down-regulated these genes at the level of mRNA and inhibited expression of luciferase encoded by vectors having the 3′ UTRs of these genes. Moreover, for each of several genes tested, mutating the mir-29c target sites in the 3′ UTR abrogated mir-29c-induced inhibition of luciferase expression. Most of the mir-29c-targeted genes identified encode extracellular matrix proteins, including multiple collagens and laminin γ1, that are associated with tumor cell invasiveness and metastatic potential, prominent characteristics of NPC. Thus, we identify eight miRNAs differentially expressed in NPC and demonstrate the involvement of one in regulating genes involved in metastasis.


Nature | 2008

Drosophila RNAi screen identifies host genes important for influenza virus replication

Linhui Hao; Akira Sakurai; Tokiko Watanabe; Ericka Sorensen; Chairul A. Nidom; Michael A. Newton; Paul Ahlquist; Yoshihiro Kawaoka

All viruses rely on host cell proteins and their associated mechanisms to complete the viral life cycle. Identifying the host molecules that participate in each step of virus replication could provide valuable new targets for antiviral therapy, but this goal may take several decades to achieve with conventional forward genetic screening methods and mammalian cell cultures. Here we describe a novel genome-wide RNA interference (RNAi) screen in Drosophila that can be used to identify host genes important for influenza virus replication. After modifying influenza virus to allow infection of Drosophila cells and detection of influenza virus gene expression, we tested an RNAi library against 13,071 genes (90% of the Drosophila genome), identifying over 100 for which suppression in Drosophila cells significantly inhibited or stimulated reporter gene (Renilla luciferase) expression from an influenza-virus-derived vector. The relevance of these findings to influenza virus infection of mammalian cells is illustrated for a subset of the Drosophila genes identified; that is, for three implicated Drosophila genes, the corresponding human homologues ATP6V0D1, COX6A1 and NXF1 are shown to have key functions in the replication of H5N1 and H1N1 influenza A viruses, but not vesicular stomatitis virus or vaccinia virus, in human HEK 293 cells. Thus, we have demonstrated the feasibility of using genome-wide RNAi screens in Drosophila to identify previously unrecognized host proteins that are required for influenza virus replication. This could accelerate the development of new classes of antiviral drugs for chemoprophylaxis and treatment, which are urgently needed given the obstacles to rapid development of an effective vaccine against pandemic influenza and the probable emergence of strains resistant to available drugs.


Cancer Research | 2007

Fundamental Differences in Cell Cycle Deregulation in Human Papillomavirus–Positive and Human Papillomavirus–Negative Head/Neck and Cervical Cancers

Dohun Pyeon; Michael A. Newton; Paul F. Lambert; Johan A. den Boon; Srikumar Sengupta; Carmen J. Marsit; Craig D. Woodworth; Joseph P. Connor; Thomas H. Haugen; Elaine M. Smith; Karl T. Kelsey; Lubomir P. Turek; Paul Ahlquist

Human papillomaviruses (HPV) are associated with nearly all cervical cancers, 20% to 30% of head and neck cancers (HNC), and other cancers. Because HNCs also arise in HPV-negative patients, this type of cancer provides unique opportunities to define similarities and differences of HPV-positive versus HPV-negative cancers arising in the same tissue. Here, we describe genome-wide expression profiling of 84 HNCs, cervical cancers, and site-matched normal epithelial samples in which we used laser capture microdissection to enrich samples for tumor-derived versus normal epithelial cells. This analysis revealed that HPV(+) HNCs and cervical cancers differed in their patterns of gene expression yet shared many changes compared with HPV(-) HNCs. Some of these shared changes were predicted, but many others were not. Notably, HPV(+) HNCs and cervical cancers were found to be up-regulated in their expression of a distinct and larger subset of cell cycle genes than that observed in HPV(-) HNC. Moreover, HPV(+) cancers overexpressed testis-specific genes that are normally expressed only in meiotic cells. Many, although not all, of the hallmark differences between HPV(+) HNC and HPV(-) HNC were a direct consequence of HPV and in particular the viral E6 and E7 oncogenes. This included a novel association of HPV oncogenes with testis-specific gene expression. These findings in primary human tumors provide novel biomarkers for early detection of HPV(+) and HPV(-) cancers, and emphasize the potential value of targeting E6 and E7 function, alone or combined with radiation and/or traditional chemotherapy, in the treatment of HPV(+) cancers.


Annual Review of Microbiology | 2010

Organelle-Like Membrane Compartmentalization of Positive-Strand RNA Virus Replication Factories

Johan A. den Boon; Paul Ahlquist

Positive-strand RNA virus genome replication is invariably associated with extensively rearranged intracellular membranes. Recent biochemical and electron microscopy analyses, including three-dimensional electron microscope tomographic imaging, have fundamentally advanced our understanding of the ultrastructure and function of organelle-like RNA replication factories. Notably, for a range of positive-strand RNA viruses embodying many major differences, independent studies have revealed multiple common principles. These principles include that RNA replication often occurs inside numerous virus-induced vesicles invaginated or otherwise elaborated from a continuous, often endoplasmic reticulum-derived membrane network. Where analyzed, each such vesicle typically contains only one or a few genome replication intermediates in conjunction with many copies of viral nonstructural proteins. In addition, these genome replication compartments often are closely associated with sites of virion assembly and budding. Our understanding of these complexes is growing, providing substantial new insights into the organization, coordination, and potential control of crucial processes in virus replication.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Systematic, genome-wide identification of host genes affecting replication of a positive-strand RNA virus

David B. Kushner; Brett D. Lindenbach; Valery Z. Grdzelishvili; Amine Noueiry; Scott M. Paul; Paul Ahlquist

Positive-strand RNA viruses are the largest virus class and include many pathogens such as hepatitis C virus and the severe acute respiratory syndrome coronavirus (SARS). Brome mosaic virus (BMV) is a representative positive-strand RNA virus whose RNA replication, gene expression, and encapsidation have been reproduced in the yeast Saccharomyces cerevisiae. By using traditional yeast genetics, host genes have been identified that function in controlling BMV translation, selecting BMV RNAs as replication templates, activating the replication complex, maintaining a lipid composition required for membrane-associated RNA replication, and other steps. To more globally and systematically identify such host factors, we used engineered BMV derivatives to assay viral RNA replication in each strain of an ordered, genome-wide set of yeast single-gene deletion mutants. Each deletion strain was transformed to express BMV replicase proteins and a BMV RNA replication template with the capsid gene replaced by a luciferase reporter. Luciferase expression, which is dependent on viral RNA replication and RNA-dependent mRNA synthesis, was measured in intact yeast cells. Approximately 4,500 yeast deletion strains (≈80% of yeast genes) were screened in duplicate and selected strains analyzed further. This functional genomics approach revealed nearly 100 genes whose absence inhibited or stimulated BMV RNA replication and/or gene expression by 3- to >25-fold. Several of these genes were shown previously to function in BMV replication, validating the approach. Newly identified genes include some in RNA, protein, or membrane modification pathways and genes of unknown function. The results further illuminate virus and cell pathways. Further refinement of virus screening likely will reveal contributions from additional host genes.


Nature Reviews Microbiology | 2006

Parallels among positive-strand RNA viruses, reverse-transcribing viruses and double-stranded RNA viruses

Paul Ahlquist

Viruses are divided into seven classes on the basis of differing strategies for storing and replicating their genomes through RNA and/or DNA intermediates. Despite major differences among these classes, recent results reveal that the non-virion, intracellular RNA-replication complexes of some positive-strand RNA viruses share parallels with the structure, assembly and function of the replicative cores of extracellular virions of reverse-transcribing viruses and double-stranded RNA viruses. Therefore, at least four of seven principal virus classes share several underlying features in genome replication and might have emerged from common ancestors. This has implications for virus function, evolution and control.


Cell Host & Microbe | 2010

Cytoplasmic viral replication complexes.

Johan A. den Boon; Arturo Diaz; Paul Ahlquist

Many viruses that replicate in the cytoplasm compartmentalize their genome replication and transcription in organelle-like structures that enhance replication efficiency and protection from host defenses. In particular, recent studies with diverse positive-strand RNA viruses have further elucidated the ultrastructure of membrane-bound RNA replication complexes and how these complexes function in close coordination with virion assembly and budding. The structure, function, and assembly of some positive-strand RNA virus replication complexes have parallels and potential evolutionary links with the replicative cores of double-strand RNA virus and retrovirus virions and more general similarities with the replication factories of cytoplasmic DNA viruses.


The Annals of Applied Statistics | 2007

Random-set methods identify distinct aspects of the enrichment signal in gene-set analysis

Michael A. Newton; Fernando A. Quintana; Johan A. den Boon; Srikumar Sengupta; Paul Ahlquist

A prespecified set of genes may be enriched, to varying degrees, for genes that have altered expression levels relative to two or more states of a cell. Knowing the enrichment of gene sets defined by functional categories, such as gene ontology (GO) annotations, is valuable for analyzing the biological signals in microarray expression data. A common approach to measuring enrichment is by cross-classifying genes according to membership in a functional category and membership on a selected list of significantly altered genes. A small Fishers exact test

Collaboration


Dive into the Paul Ahlquist's collaboration.

Top Co-Authors

Avatar

Michael Janda

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Roy C. French

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Johan A. den Boon

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Michael A. Newton

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Arturo Diaz

University of California

View shared research outputs
Top Co-Authors

Avatar

Jianbo Chen

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Xiaofeng Wang

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Amine Noueiry

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Linhui Hao

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

Paul Kaesberg

University of Wisconsin-Madison

View shared research outputs
Researchain Logo
Decentralizing Knowledge