Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amir Semmo is active.

Publication


Featured researches published by Amir Semmo.


Computer Graphics Forum | 2012

Interactive Visualization of Generalized Virtual 3D City Models using Level-of-Abstraction Transitions

Amir Semmo; Matthias Trapp; Jan Eric Kyprianidis; Jürgen Döllner

Virtual 3D city models play an important role in the communication of complex geospatial information in a growing number of applications, such as urban planning, navigation, tourist information, and disaster management. In general, homogeneous graphic styles are used for visualization. For instance, photorealism is suitable for detailed presentations, and non‐photorealism or abstract stylization is used to facilitate guidance of a viewers gaze to prioritized information. However, to adapt visualization to different contexts and contents and to support saliency‐guided visualization based on user interaction or dynamically changing thematic information, a combination of different graphic styles is necessary. Design and implementation of such combined graphic styles pose a number of challenges, specifically from the perspective of real‐time 3D visualization. In this paper, the authors present a concept and an implementation of a system that enables different presentation styles, their seamless integration within a single view, and parametrized transitions between them, which are defined according to tasks, camera view, and image resolution. The paper outlines potential usage scenarios and application fields together with a performance evaluation of the implementation.


Computers & Graphics | 2016

Image stylization by interactive oil paint filtering

Amir Semmo; Daniel Limberger; Jan Eric Kyprianidis; Jürgen Döllner

This paper presents an interactive system for transforming images into an oil paint look. The system comprises two major stages. First, it derives dominant colors from an input image for feature-aware recolorization and quantization to conform with a global color palette. Afterwards, it employs non-linear filtering based on the smoothed structure adapted to the main feature contours of the quantized image to synthesize a paint texture in real-time. Our filtering approach leads to homogeneous outputs in the color domain and enables creative control over the visual output, such as color adjustments and per-pixel parametrizations by means of interactive painting. To this end, our system introduces a generalized brush-based painting interface that operates within parameter spaces to locally adjust the level of abstraction of the filtering effects. Several results demonstrate the various applications of our filtering approach to different genres of photography. Graphical abstractDisplay Omitted HighlightsAn approach for image stylization with an oil paint look by means of image filtering is proposed.A method for image quantization is introduced that is based on the dominant colors derived from local image regions.A real-time paint texture synthesis is proposed based on the smoothed image structure.An interactive painting system is provided that supports brush-based per-pixel parametrizations of local image filters.


International Journal of Geographical Information Science | 2014

Multi-perspective 3D panoramas

Sebastian Pasewaldt; Amir Semmo; Matthias Trapp; Jürgen Döllner

This article presents multi-perspective 3D panoramas that focus on visualizing 3D geovirtual environments (3D GeoVEs) for navigation and exploration tasks. Their key element, a multi-perspective view (MPV), seamlessly combines what is seen from multiple viewpoints into a single image. This approach facilitates the presentation of information for virtual 3D city and landscape models, particularly by reducing occlusions, increasing screen-space utilization, and providing additional context within a single image. We complement MPVs with cartographic visualization techniques to stylize features according to their semantics and highlight important or prioritized information. When combined, both techniques constitute the core implementation of interactive, multi-perspective 3D panoramas. They offer a large number of effective means for visual communication of 3D spatial information, a high degree of customization with respect to cartographic design, and manifold applications in different domains. We discuss design decisions of 3D panoramas for the exploration of and navigation in 3D GeoVEs. We also discuss a preliminary user study that indicates that 3D panoramas are a promising approach for navigation systems using 3D GeoVEs.


non photorealistic animation and rendering | 2017

Neural style transfer: a paradigm shift for image-based artistic rendering?

Amir Semmo; Tobias Isenberg; Jürgen Döllner

In this meta paper we discuss image-based artistic rendering (IB-AR) based on neural style transfer (NST) and argue, while NST may represent a paradigm shift for IB-AR, that it also has to evolve as an interactive tool that considers the design aspects and mechanisms of artwork production. IB-AR received significant attention in the past decades for visual communication, covering a plethora of techniques to mimic the appeal of artistic media. Example-based rendering represents one the most promising paradigms in IB-AR to (semi-)automatically simulate artistic media with high fidelity, but so far has been limited because it relies on pre-defined image pairs for training or informs only low-level image features for texture transfers. Advancements in deep learning showed to alleviate these limitations by matching content and style statistics via activations of neural network layers, thus making a generalized style transfer practicable. We categorize style transfers within the taxonomy of IB-AR, then propose a semiotic structure to derive a technical research agenda for NSTs with respect to the grand challenges of NPAR. We finally discuss the potentials of NSTs, thereby identifying applications such as casual creativity and art production.


Proceedings of the Symposium on Computational Aesthetics | 2013

Real-time rendering of water surfaces with cartography-oriented design

Amir Semmo; Jan Eric Kyprianidis; Matthias Trapp; Jürgen Döllner

More than 70% of the Earths surface is covered by oceans, seas, and lakes, making water surfaces one of the primary elements in geospatial visualization. Traditional approaches in computer graphics simulate and animate water surfaces in the most realistic ways. However, to improve orientation, navigation, and analysis tasks within 3D virtual environments, these surfaces need to be carefully designed to enhance shape perception and land-water distinction. We present an interactive system that renders water surfaces with cartography-oriented design using the conventions of mapmakers. Our approach is based on the observation that hand-drawn maps utilize and align texture features to shorelines with non-linear distance to improve figure-ground perception and express motion. To obtain local orientation and principal curvature directions, first, our system computes distance and feature-aligned distance maps. Given these maps, waterlining, water stippling, contour-hatching, and labeling are applied in real-time with spatial and temporal coherence. The presented methods can be useful for map exploration, landscaping, urban planning, and disaster management, which is demonstrated by various real-world virtual 3D city and landscape models.


Cartographic Journal | 2015

Cartography-Oriented Design of 3D Geospatial Information Visualization – Overview and Techniques

Amir Semmo; Matthias Trapp; Markus Jobst; Jürgen Döllner

In economy, society and personal life map-based interactive geospatial visualization becomes a natural element of a growing number of applications and systems. The visualization of 3D geospatial information, however, raises the question how to represent the information in an effective way. Considerable research has been done in technology-driven directions in the fields of cartography and computer graphics (e.g., design principles, visualization techniques). Here, non-photorealistic rendering (NPR) represents a promising visualization category – situated between both fields – that offers a large number of degrees for the cartography-oriented visual design of complex 2D and 3D geospatial information for a given application context. Still today, however, specifications and techniques for mapping cartographic design principles to the state-of-the-art rendering pipeline of 3D computer graphics remain to be explored. This paper revisits cartographic design principles for 3D geospatial visualization and introduces an extended 3D semiotic model that complies with the general, interactive visualization pipeline. Based on this model, we propose NPR techniques to interactively synthesize cartographic renditions of basic feature types, such as terrain, water, and buildings. In particular, it includes a novel iconification concept to seamlessly interpolate between photorealistic and cartographic representations of 3D landmarks. Our work concludes with a discussion of open challenges in this field of research, including topics, such as user interaction and evaluation.


Proceedings of the Workshop on Computational Aesthetics | 2014

Image filtering for interactive level-of-abstraction visualization of 3D scenes

Amir Semmo; Jürgen Döllner

Texture mapping is a key technology in computer graphics for visual design of rendered 3D scenes. An effective information transfer of surface properties, encoded by textures, however, depends significantly on how important information is highlighted and cognitively processed by the user in an application context. Edge-preserving image filtering is a promising approach to address this concern while preserving global salient structures. Much research has focused on applying image filters in a post-process stage to foster an artistically stylized rendering, but these approaches are generally not able to preserve depth cues important for 3D visualization (e.g., texture gradient). To this end, filtering that processes texture data coherently with respect to linear perspective and spatial relationships is required. In this work, we present a system that enables to process textured 3D scenes with perspective coherence by arbitrary image filters. We propose decoupled deferred texturing with (1) caching strategies to interactively perform image filtering prior to texture mapping, and (2) for each mipmap level separately to enable a progressive level of abstraction. We demonstrate the potentials of our methods on several applications, including illustrative visualization, focus+context visualization, geometric detail removal, and depth of field. Our system supports frame-to-frame coherence, order-independent transparency, multitexturing, and content-based filtering.


euro-mediterranean conference | 2010

Communication of digital cultural heritage in public spaces by the example of Roman cologne

Matthias Trapp; Amir Semmo; Rafael Pokorski; Claus-Daniel Herrmann; Jürgen Döllner; Michael Eichhorn; Michael Heinzelmann

The communication of cultural heritage in public spaces such as museums or exhibitions, gain more and more importance during the last years. The possibilities of interactive 3D applications open a new degree of freedom beyond the mere presentation of static visualizations, such as pre-produced video or image data. A user is now able to directly interact with 3D virtual environments that enable the depiction and exploration of digital cultural heritage artifacts in real-time. However, such technology requires concepts and strategies for guiding a user throughout these scenarios, since varying levels of experiences within interactive media can be assumed. This paper presents a concept as well as implementation for communication of digital cultural heritage in public spaces, by example of the project Roman Cologne. It describes the results achieved by an interdisciplinary team of archaeologists, designers, and computer graphics engineers with the aim to virtually reconstruct an interactive high-detail 3D city model of Roman Cologne.


international conference on computer graphics and interactive techniques | 2017

Pictory: combining neural style transfer and image filtering

Amir Semmo; Matthias Trapp; Jürgen Döllner; Mandy Klingbeil

This work presents Pictory, a mobile app that empowers users to transform photos into artistic renditions by using a combination of neural style transfer with user-controlled state-of-the-art nonlinear image filtering. The combined approach features merits of both artistic rendering paradigms: deep convolutional neural networks can be used to transfer style characteristics at a global scale, while image filtering is able to simulate phenomena of artistic media at a local scale. Thereby, the proposed app implements an interactive two-stage process: first, style presets based on pre-trained feed-forward neural networks are applied using GPU-accelerated compute shaders to obtain initial results. Second, the intermediate output is stylized via oil paint, watercolor, or toon filtering to inject characteristics of traditional painting media such as pigment dispersion (watercolor) as well as soft color blendings (oil paint), and to filter artifacts such as fine-scale noise. Finally, on-screen painting facilitates pixel-precise creative control over the filtering stage, e. g., to vary the brush and color transfer, while joint bilateral upsampling enables outputs at full image resolution suited for printing on real canvas.


international conference on computer graphics and interactive techniques | 2016

Interactive multi-scale oil paint filtering on mobile devices

Amir Semmo; Matthias Trapp; Tobias Dürschmid; Jürgen Döllner; Sebastian Pasewaldt

This work presents an interactive mobile implementation of a filter that transforms images into an oil paint look. At this, a multi-scale approach that processes image pyramids is introduced that uses flow-based joint bilateral upsampling to achieve deliberate levels of abstraction at multiple scales and interactive frame rates. The approach facilitates the implementation of interactive tools that adjust the appearance of filtering effects at run-time, which is demonstrated by an on-screen painting interface for per-pixel parameterization that fosters the casual creativity of non-artists.

Collaboration


Dive into the Amir Semmo's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge