Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sebastian Pasewaldt is active.

Publication


Featured researches published by Sebastian Pasewaldt.


International Journal of Geographical Information Science | 2014

Multi-perspective 3D panoramas

Sebastian Pasewaldt; Amir Semmo; Matthias Trapp; Jürgen Döllner

This article presents multi-perspective 3D panoramas that focus on visualizing 3D geovirtual environments (3D GeoVEs) for navigation and exploration tasks. Their key element, a multi-perspective view (MPV), seamlessly combines what is seen from multiple viewpoints into a single image. This approach facilitates the presentation of information for virtual 3D city and landscape models, particularly by reducing occlusions, increasing screen-space utilization, and providing additional context within a single image. We complement MPVs with cartographic visualization techniques to stylize features according to their semantics and highlight important or prioritized information. When combined, both techniques constitute the core implementation of interactive, multi-perspective 3D panoramas. They offer a large number of effective means for visual communication of 3D spatial information, a high degree of customization with respect to cartographic design, and manifold applications in different domains. We discuss design decisions of 3D panoramas for the exploration of and navigation in 3D GeoVEs. We also discuss a preliminary user study that indicates that 3D panoramas are a promising approach for navigation systems using 3D GeoVEs.


Archive | 2011

Interactive Rendering Techniques for Highlighting in 3D Geovirtual Environments

Matthias Trapp; Christian Beesk; Sebastian Pasewaldt; Jürgen Döllner

3D geovirtual environments (GeoVE), such as virtual 3D city and landscape models become an important tool for the visualization of geospatial information. Highlighting is an important component within a visualization framework and is essential for the user interaction within many applications. It enables the user to easily perceive active or selected objects in the context of the current interaction task. With respect to 3D GeoVE, it has a number of applications, such as the visualization of user selections, data base queries, as well as navigation aid by highlighting way points, routes, or to guide the user attention. The geometrical complexity of 3D GeoVE often requires specialized rendering techniques for the real-time image synthesis. This paper presents a framework that unifies various highlighting techniques and is especially suitable for the interactive rendering 3D GeoVE of high geometrical complexity.


TPCG | 2013

Multi-Perspective Detail+Overview Visualization for 3D Building Exploration

Sebastian Pasewaldt; Matthias Trapp; Jürgen Döllner

Virtual 3D building models, as key elements of virtual 3D city models, are used in a growing number of application domains, such as geoanalysis, disaster management and architectural planning. Visualization systems for such building models often rely on perspective or orthogonal projections using a single viewpoint. Therefore, the exploration of a complete model requires a user to change the viewpoint multiple times and to memorize the content of each view to obtain a comprehensive mental model. Since this is usually a time-consuming task, which implies context switching, current visualization systems use multiple viewports to simultaneously depict an object from different perspectives. Our approach extends the idea of multiple viewports by combining two linked views for the interactive exploration of virtual 3D buildings model and their facades. In contrast to traditional approaches, we automatically generate a multi-perspective view that simultaneously depicts all facades of the building in one overview image. This facilitates the process of obtaining overviews and supports fast and direct navigation to various points-of-interest. We describe the concept and implementations of our Multiple-Center-of-Projection camera model for real-time multi-perspective image synthesis. Further, we provide insights into different interaction techniques for linked multi-perspective views and outline approaches of future work.


international conference on computer graphics and interactive techniques | 2016

Interactive multi-scale oil paint filtering on mobile devices

Amir Semmo; Matthias Trapp; Tobias Dürschmid; Jürgen Döllner; Sebastian Pasewaldt

This work presents an interactive mobile implementation of a filter that transforms images into an oil paint look. At this, a multi-scale approach that processes image pyramids is introduced that uses flow-based joint bilateral upsampling to achieve deliberate levels of abstraction at multiple scales and interactive frame rates. The approach facilitates the implementation of interactive tools that adjust the appearance of filtering effects at run-time, which is demonstrated by an on-screen painting interface for per-pixel parameterization that fosters the casual creativity of non-artists.


international conference on computer graphics and interactive techniques | 2016

Becasso: artistic image processing and editing on mobile devices

Sebastian Pasewaldt; Amir Semmo; Jürgen Döllner; Frank Schlegel

BeCasso is a mobile app that enables users to transform photos into high-quality, high-resolution non-photorealistic renditions, such as oil and watercolor paintings, cartoons, and colored pencil drawings, which are inspired by real-world paintings or drawing techniques. In contrast to neuronal network and physically-based approaches, the app employs state-of-the-art nonlinear image filtering. For example, oil paint and cartoon effects are based on smoothed structure information to interactively synthesize renderings with soft color transitions. BeCasso empowers users to easily create aesthetic renderings by implementing a two-fold strategy: First, it provides parameter presets that may serve as a starting point for a custom stylization based on global parameter adjustments. Thereby, users can obtain initial renditions that may be fine-tuned afterwards. Second, it enables local style adjustments: using on-screen painting metaphors, users are able to locally adjust different stylization features, e.g., to vary the level of abstraction, pen, brush and stroke direction or the contour lines. In this way, the app provides tools for both higher-level interaction and low-level control [Isenberg 2016] to serve the different needs of non-experts and digital artists.


international conference on geoinformatics | 2012

An immersive visualization system for virtual 3D city models

Juri Engel; Sebastian Pasewaldt; Matthias Trapp; Jürgen Döllner

Virtual 3D city models are essential visualization tools for effective communication of complex urban spatial information. Immersive visualization of virtual 3D city models offers an intuitive access to and an effective way of realization of urban spatial information, enabling new collaborative applications and decision-support systems. This paper discusses techniques for and usage of fully immersive environments for visualizing virtual 3D city models by advanced 3D rendering techniques. Fully immersive environments imply a number of specific requirements for both hardware and software, which are discussed in detail. Further, we identify and outline conceptual and technical challenges as well as possible solution approaches by visualization system prototypes for large-scale, fully immersive environments. We evaluate the presented concepts using two application examples and discuss the results.


international conference on computer graphics and interactive techniques | 2017

Pictory - neural style transfer and editing with coreML

Sebastian Pasewaldt; Amir Semmo; Mandy Klingbeil; Jürgen Döllner

This work presents advances in the design and implementation of Pictory, an iOS app for artistic neural style transfer and interactive image editing using the CoreML and Metal APIs. Pictory combines the benefits of neural style transfer, e.g., high degree of abstraction on a global scale, with the interactivity of GPU-accelerated state-of-the-art image-based artistic rendering on a local scale. Thereby, the user is empowered to create high-resolution, abstracted renditions in a two-stage approach. First, a photo is transformed using a pre-trained convolutional neural network to obtain an intermediate stylized representation. Second, image-based artistic rendering techniques (e.g., watercolor, oil paint or toon filtering) are used to further stylize the image. Thereby, fine-scale texture noise---introduced by the style transfer---is filtered and interactive means are provided to individually adjust the stylization effects at run-time. Based on qualitative and quantitative user studies, Pictory has been redesigned and optimized to support casual users as well as mobile artists by providing effective, yet easy to understand, tools to facilitate image editing at multiple levels of control.


non photorealistic animation and rendering | 2018

Approaches for local artistic control of mobile neural style transfer

Max Reimann; Mandy Klingbeil; Sebastian Pasewaldt; Amir Semmo; Jürgen Döllner; Matthias Trapp

This work presents enhancements to state-of-the-art adaptive neural style transfer techniques, thereby providing a generalized user interface with creativity tool support for lower-level local control to facilitate the demanding interactive editing on mobile devices. The approaches are implemented in a mobile app that is designed for orchestration of three neural style transfer techniques using iterative, multi-style generative and adaptive neural networks that can be locally controlled by on-screen painting metaphors to perform location-based filtering and direct the composition. Based on first user tests, we conclude with insights, showing different levels of satisfaction for the implemented techniques and user interaction design, pointing out directions for future research.


international conference on computer graphics and interactive techniques | 2018

MaeSTrO: mobile style transfer orchestration using adaptive neural networks

Max Reimann; Amir Semmo; Jürgen Döllner; Sebastian Pasewaldt; Mandy Klingbeil

We present MaeSTrO, a mobile app for image stylization that empowers users to direct, edit and perform a neural style transfer with creative control. The app uses iterative style transfer, multi-style generative and adaptive networks to compute and apply flexible yet comprehensive style models of arbitrary images at run-time. Compared to other mobile applications, MaeSTrO introduces an interactive user interface that empowers users to orchestrate style transfers in a two-stage process for an individual visual expression: first, initial semantic segmentation of a style image can be complemented by on-screen painting to direct sub-styles in a spatially-aware manner. Second, semantic masks can be virtually drawn on top of a content image to adjust neural activations within local image regions, and thus direct the transfer of learned sub-styles. This way, the general feed-forward neural style transfer is evolved towards an interactive tool that is able to consider composition variables and mechanisms of general artwork production, such as color, size and location-based filtering. MaeSTrO additionally enables users to define new styles directly on a device and synthesize high-quality images based on prior segmentations via a service-based implementation of compute-intensive iterative style transfer techniques.


international conference on computer graphics and interactive techniques | 2017

Challenges in user experience design of image filtering apps

Mandy Klingbeil; Sebastian Pasewaldt; Amir Semmo; Jürgen Döllner

Photo filtering apps successfully deliver image-based stylization techniques to a broad audience, in particular in the ubiquitous domain (e.g., smartphones, tablet computers). Interacting with these inherently complex techniques has so far mostly been approached in two different ways: (1) by exposing many (technical) parameters to the user, resulting in a professional application that typically requires expert domain knowledge, or (2) by hiding the complexity via presets that only allows the application of filters but prevents creative expression thereon. In this work, we outline challenges of and present approaches for providing interactive image filtering on mobile devices, thereby focusing on how to make them usable for people in their daily life. This is discussed by the example of BeCasso, a user-centric app for assisted image stylization that targets two user groups: mobile artists and users seeking casual creativity. Through user research, qualitative and quantitative user studies, we identify and outline usability issues that showed to prevent both user groups from reaching their objectives when using the app. On the one hand, user-group-targeting has been improved by an optimized user experience design. On the other hand, multiple level of controls have been implemented to ease the interaction and hide the underlying complex technical parameters. Evaluations underline that the presented approach can increase the usability of complex image stylization techniques for mobile apps.

Collaboration


Dive into the Sebastian Pasewaldt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge