Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit Deorukhkar is active.

Publication


Featured researches published by Amit Deorukhkar.


Clinical Cancer Research | 2008

Imaging epidermal growth factor receptor expression in vivo: Pharmacokinetic and biodistribution characterization of a bioconjugated quantum dot nanoprobe

Parmeswaran Diagaradjane; Jacobo M. Orenstein-Cardona; Norman E. Cólon-Casasnovas; Amit Deorukhkar; Shujun Shentu; Norihito Kuno; David L. Schwartz; Juri G. Gelovani; Sunil Krishnan

Purpose: To develop and validate an optical imaging nanoprobe for the discrimination of epidermal growth factor (EGF) receptor (EGFR)–overexpressing tumors from surrounding normal tissues that also expresses EGFR. Experimental Design: Near-infrared (NIR) quantum dots (QD) were coupled to EGF using thiol-maleimide conjugation to create EGF-QD nanoprobes. In vitro binding affinity of these nanoprobes and unconjugated QDs was evaluated in a panel of cell lines, with and without anti-EGFR antibody pretreatment. Serial optical imaging of HCT116 xenograft tumors was done after systemic injection of QD and EGF-QD. Results: EGF-QD showed EGFR-specific binding in vitro. In vivo imaging showed three distinct phases, tumor influx (∼3 min), clearance (∼60 min), and accumulation (1-6 h), of EGF-QD nanoprobes. Both QD and EGF-QD showed comparable nonspecific rapid tumor influx and clearance followed by attainment of an apparent dynamic equilibrium at ∼60 min. Subsequently (1-6 h), whereas QD concentration gradually decreased in tumors, EGF-QDs progressively accumulated in tumors. On delayed imaging at 24 h, tumor fluorescence decreased to near-baseline levels for both QD and EGF-QD. Ex vivo whole-organ fluorescence, tissue homogenate fluorescence, and confocal microscopic analyses confirmed tumor-specific accumulation of EGF-QD at 4 h. Immunofluorescence images showed diffuse colocalization of EGF-QD fluorescence within EGFR-expressing tumor parenchyma compared with patchy perivascular sequestration of QD. Conclusion: These results represent the first pharmacokinetic characterization of a robust EGFR imaging nanoprobe. The measurable contrast enhancement of tumors 4 h after systemic administration of EGF-QD and its subsequent normalization at 24 h imply that this nanoprobe may permit quantifiable and repetitive imaging of EGFR expression.


Nano Letters | 2008

Modulation of in Vivo Tumor Radiation Response via Gold Nanoshell-Mediated Vascular-Focused Hyperthermia: Characterizing an Integrated Antihypoxic and Localized Vascular Disrupting Targeting Strategy

Parmeswaran Diagaradjane; Anil Shetty; James C. Wang; Andrew M. Elliott; Jon A. Schwartz; Shujun Shentu; Hee C. Park; Amit Deorukhkar; Jason Stafford; S Cho; James W. Tunnell; John D. Hazle; Sunil Krishnan

We report noninvasive modulation of in vivo tumor radiation response using gold nanoshells. Mild-temperature hyperthermia generated by near-infrared illumination of gold nanoshell-laden tumors, noninvasively quantified by magnetic resonance temperature imaging, causes an early increase in tumor perfusion that reduces the hypoxic fraction of tumors. A subsequent radiation dose induces vascular disruption with extensive tumor necrosis. Gold nanoshells sequestered in the perivascular space mediate these two tumor vasculature-focused effects to improve radiation response of tumors. This novel integrated antihypoxic and localized vascular disrupting therapy can potentially be combined with other conventional antitumor therapies.


Clinical Cancer Research | 2008

Curcumin Sensitizes Human Colorectal Cancer Xenografts in Nude Mice to γ-Radiation by Targeting Nuclear Factor-κB–Regulated Gene Products

Ajaikumar B. Kunnumakkara; Parmeswaran Diagaradjane; Sushovan Guha; Amit Deorukhkar; Shujun Shentu; Bharat B. Aggarwal; Sunil Krishnan

Purpose: How colorectal cancer develops resistance to γ-radiation is not fully understood, but the transcription factor nuclear factor-κB (NF-κB) and NF-κB–regulated gene products have been proposed as mediators. Because curcumin, a component of turmeric (Curcuma longa), has been shown to suppress NF-κB activation, whether it can sensitize the colorectal cancer to γ-radiation was investigated in colorectal cancer xenografts in nude mice. Experimental Design: We established HCT 116 xenograft in nude mice, randomized into four groups, and treated with vehicle (corn oil), curcumin, γ-radiation, and curcumin in combination with γ-radiation. NF-κB modulation was ascertained using electrophoretic mobility shift assay and immunohistochemistry. Markers of proliferation, angiogenesis, and invasion were monitored by immunohistochemistry and Western blot analysis. Results: Curcumin significantly enhanced the efficacy of fractionated radiation therapy by prolonging the time to tumor regrowth (P = 0.02) and by reducing the Ki-67 proliferation index (P < 0. 001). Moreover, curcumin suppressed NF-κB activity and the expression of NF-κB–regulated gene products (cyclin D1, c-myc, Bcl-2, Bcl-xL, cellular inhibitor of apoptosis protein-1, cyclooxygenase-2, matrix metalloproteinase-9, and vascular endothelial growth factor), many of which were induced by radiation therapy and mediate radioresistance. The combination of curcumin and radiation therapy also suppressed angiogenesis, as indicated by a decrease in vascular endothelial growth factor and microvessel density (P = 0.002 versus radiation alone). Conclusion: Collectively, our results suggest that curcumin potentiates the antitumor effects of radiation therapy in colorectal cancer by suppressing NF-κB and NF-κB–regulated gene products, leading to inhibition of proliferation and angiogenesis.


International Journal of Cancer | 2009

Curcumin sensitizes human colorectal cancer to capecitabine by modulation of cyclin D1, COX-2, MMP-9, VEGF and CXCR4 expression in an orthotopic mouse model

Ajaikumar B. Kunnumakkara; Parmeswaran Diagaradjane; Preetha Anand; Harikumar B. Kuzhuvelil; Amit Deorukhkar; Juri G. Gelovani; Sushovan Guha; Sunil Krishnan; Bharat B. Aggarwal

Because of the poor prognosis and the development of resistance against chemotherapeutic drugs, the current treatment for advanced metastatic colorectal cancer (CRC) is ineffective. Whether curcumin (a component of turmeric) can potentiate the effect of capecitabine against growth and metastasis of CRC was investigated. The effect of curcumin on proliferation of CRC cell lines was examined by mitochondrial dye‐uptake assay, apoptosis by esterase staining, nuclear factor‐kappaB (NF‐κB) by electrophoretic mobility shift assay and gene expression by Western blot analysis. The effect of curcumin on the growth and metastasis of CRC was also examined in orthotopically implanted tumors in nude mice. In vitro, curcumin inhibited the proliferation of human CRC cell lines, potentiated capecitabine‐induced apoptosis, inhibited NF‐κB activation and suppressed NF‐κB‐regulated gene products. In nude mice, the combination of curcumin and capecitabine was found to be more effective than either agent alone in reducing tumor volume (p = 0.001 vs. control; p = 0.031 vs. capecitabine alone), Ki‐67 proliferation index (p = 0.001 vs. control) and microvessel density marker CD31. The combination treatment was also highly effective in suppressing ascites and distant metastasis to the liver, intestines, lungs, rectum and spleen. This effect was accompanied by suppressed expression of activated NF‐κB and NF‐κB‐regulated gene products (cyclin D1,c‐myc, bcl‐2, bcl‐xL, cIAP‐1, COX‐2, ICAM‐1, MMP‐9, CXCR4 and VEGF). Overall, our results suggest that curcumin sensitizes CRC to the antitumor and antimetastatic effects of capecitabine by suppressing NF‐κB cell signaling pathway.


International Journal of Radiation Oncology Biology Physics | 2009

Curcumin Modulates the Radiosensitivity of Colorectal Cancer Cells by Suppressing Constitutive and Inducible NF-κB Activity

Santosh K. Sandur; Amit Deorukhkar; Manoj Pandey; Ana María Pabón; Shujun Shentu; Sushovan Guha; Bharat B. Aggarwal; Sunil Krishnan

PURPOSE Radiation therapy is an integral part of the preoperative treatment of rectal cancers. However, only a minority of patients achieve a complete pathologic response to therapy because of resistance of these tumors to radiation therapy. This resistance may be mediated by constitutively active pro-survival signaling pathways or by inducible/acquired mechanisms in response to radiation therapy. Simultaneous inhibition of these pathways can sensitize these tumors to radiation therapy. METHODS AND MATERIALS Human colorectal cancer cells were exposed to clinically relevant doses of gamma rays, and the mechanism of their radioresistance was investigated. We characterized the transcription factor nuclear factor-kappaB (NF-kappaB) activation as a mechanism of inducible radioresistance in colorectal cancer and used curcumin, the active ingredient in the yellow spice turmeric, to overcome this resistance. RESULTS Curcumin inhibited the proliferation and the post-irradiation clonogenic survival of multiple colorectal cancer cell lines. Radiation stimulated NF-kappaB activity in a dose- and time-dependent manner, whereas curcumin suppressed this radiation-induced NF-kappaB activation via inhibition of radiation-induced phosphorylation and degradation of inhibitor of kappaB alpha, inhibition of inhibitor of kappaB kinase activity, and inhibition of Akt phosphorylation. Curcumin also suppressed NF-kappaB-regulated gene products (Bcl-2, Bcl-x(L), inhibitor of apoptosis protein-2, cyclooxygenase-2, and cyclin D1). CONCLUSIONS Our results suggest that transient inducible NF-kappaB activation provides a prosurvival response to radiation that may account for development of radioresistance. Curcumin blocks this signaling pathway and potentiates the antitumor effects of radiation therapy.


Biochemical Pharmacology | 2010

Targeting inflammatory pathways for tumor radiosensitization

Amit Deorukhkar; Sunil Krishnan

Although radiation therapy (RT) is an integral component of treatment of patients with many types of cancer, inherent and/or acquired resistance to the cytotoxic effects of RT is increasingly recognized as a significant impediment to effective cancer treatment. Inherent resistance is mediated by constitutively activated oncogenic, proliferative and anti-apoptotic proteins/pathways whereas acquired resistance refers to transient induction of proteins/pathways following radiation exposure. To realize the full potential of RT, it is essential to understand the signaling pathways that mediate inducible radiation resistance, a poorly characterized phenomenon, and identify druggable targets for radiosensitization. Ionizing radiation induces a multilayered signaling response in mammalian cells by activating many pro-survival pathways that converge to transiently activate a few important transcription factors (TFs), including nuclear factor kappa B (NF-κB) and signal transducers and activators of transcription (STATs), the central mediators of inflammatory and carcinogenic signaling. Together, these TFs activate a wide spectrum of pro-survival genes regulating inflammation, anti-apoptosis, invasion and angiogenesis pathways, which confer tumor cell radioresistance. Equally, radiation-induced activation of pro-inflammatory cytokine network (including interleukin (IL)-1β, IL-6 and tumor necrosis factor-α) has been shown to mediate symptom burden (pain, fatigue, local inflammation) in cancer patients. Thus, targeting radiation-induced inflammatory pathways may exert a dual effect of accentuating the tumor radioresponse and reducing normal tissue side-effects, thereby increasing the therapeutic window of cancer treatment. We review recent data demonstrating the pivotal role played by inflammatory pathways in cancer progression and modulation of radiation response.


Cancer Research | 2010

γ-Tocotrienol Inhibits Pancreatic Tumors and Sensitizes Them to Gemcitabine Treatment by Modulating the Inflammatory Microenvironment

Ajaikumar B. Kunnumakkara; Bokyung Sung; Jayaraj Ravindran; Parmeswaran Diagaradjane; Amit Deorukhkar; Sanjit Dey; Cemile Koca; Vivek R. Yadav; Zhimin Tong; Juri G. Gelovani; Sushovan Guha; Sunil Krishnan; Bharat B. Aggarwal

Pancreatic cancers generally respond poorly to chemotherapy, prompting a need to identify agents that could sensitize tumors to treatment. In this study, we investigated the response of human pancreatic cells to γ-tocotrienol (γ-T3), a novel, unsaturated form of vitamin E found in palm oil and rice bran oil, to determine whether it could potentiate the effects of gemcitabine, a standard of care in clinical treatment of pancreatic cancer. γ-T3 inhibited the in vitro proliferation of pancreatic cancer cell lines with variable p53 status and potentiated gemcitabine-induced apoptosis. These effects correlated with an inhibition of NF-κB activation by γ-T3 and a suppression of key cellular regulators including cyclin D1, c-Myc, cyclooxygenase-2 (COX-2), Bcl-2, cellular inhibitor of apoptosis protein, survivin, vascular endothelial growth factor (VEGF), ICAM-1, and CXCR4. In an orthotopic nude mouse model of human pancreatic cancer, p.o. administration of γ-T3 inhibited tumor growth and enhanced the antitumor properties of gemcitabine. Immunohistochemical analysis indicated a correlation between tumor growth inhibition and reduced expression of Ki-67, COX-2, matrix metalloproteinase-9 (MMP-9), NF-κB p65, and VEGF in the tissue. Combination treatment also downregulated NF-κB activity along with the NF-κB-regulated gene products, such as cyclin D1, c-Myc, VEGF, MMP-9, and CXCR4. Consistent with an enhancement of tumor apoptosis, caspase activation was observed in tumor tissues. Overall, our findings suggest that γ-T3 can inhibit the growth of human pancreatic tumors and sensitize them to gemcitabine by suppressing NF-κB-mediated inflammatory pathways linked to tumorigenesis.


Molecular Cancer Therapeutics | 2010

A Novel Small-Molecule Inhibitor of Protein Kinase D Blocks Pancreatic Cancer Growth In vitro and In vivo

Kuzhuvelil B. Harikumar; Ajaikumar B. Kunnumakkara; Nobuo Ochi; Zhimin Tong; Amit Deorukhkar; Bokyung Sung; Lloyd Kelland; Stephen Jamieson; Rachel Sutherland; Tony Raynham; Mark Charles; Azadeh Bagherazadeh; Caroline Foxton; Alexandra Boakes; Muddasar Farooq; Dipen M. Maru; Parmeswaran Diagaradjane; Yoichi Matsuo; James Sinnett-Smith; Juri G. Gelovani; Sunil Krishnan; Bharat B. Aggarwal; Enrique Rozengurt; Christopher Ireson; Sushovan Guha

Protein kinase D (PKD) family members are increasingly implicated in multiple normal and abnormal biological functions, including signaling pathways that promote mitogenesis in pancreatic cancer. However, nothing is known about the effects of targeting PKD in pancreatic cancer. Our PKD inhibitor discovery program identified CRT0066101 as a specific inhibitor of all PKD isoforms. The aim of our study was to determine the effects of CRT0066101 in pancreatic cancer. Initially, we showed that autophosphorylated PKD1 and PKD2 (activated PKD1/2) are significantly upregulated in pancreatic cancer and that PKD1/2 are expressed in multiple pancreatic cancer cell lines. Using Panc-1 as a model system, we showed that CRT0066101 reduced bromodeoxyuridine incorporation; increased apoptosis; blocked neurotensin-induced PKD1/2 activation; reduced neurotensin-induced, PKD-mediated Hsp27 phosphorylation; attenuated PKD1-mediated NF-κB activation; and abrogated the expression of NF-κB-dependent proliferative and prosurvival proteins. We showed that CRT0066101 given orally (80 mg/kg/d) for 24 days significantly abrogated pancreatic cancer growth in Panc-1 subcutaneous xenograft model. Activated PKD1/2 expression in the treated tumor explants was significantly inhibited with peak tumor concentration (12 μmol/L) of CRT0066101 achieved within 2 hours after oral administration. Further, we showed that CRT0066101 given orally (80 mg/kg/d) for 21 days in Panc-1 orthotopic model potently blocked tumor growth in vivo. CRT0066101 significantly reduced Ki-67–positive proliferation index (P < 0.01), increased terminal deoxynucleotidyl transferase–mediated dUTP nick end labeling–positive apoptotic cells (P < 0.05), and abrogated the expression of NF-κB–dependent proteins including cyclin D1, survivin, and cIAP-1. Our results show for the first time that a PKD-specific small-molecule inhibitor CRT0066101 blocks pancreatic cancer growth in vivo and show that PKD is a novel therapeutic target in pancreatic cancer. Mol Cancer Ther; 9(5); 1136–46. ©2010 AACR.


Clinical Cancer Research | 2012

Ursolic Acid Inhibits Growth and Metastasis of Human Colorectal Cancer in an Orthotopic Nude Mouse Model by Targeting Multiple Cell Signaling Pathways: Chemosensitization with Capecitabine

Sahdeo Prasad; Vivek R. Yadav; Bokyung Sung; Simone Reuter; Ramaswamy Kannappan; Amit Deorukhkar; Parmeswaran Diagaradjane; Caimiao Wei; Veerabhadran Baladandayuthapani; Sunil Krishnan; Sushovan Guha; Bharat B. Aggarwal

Purpose: Development of chemoresistance, poor prognosis, and metastasis often renders the current treatments for colorectal cancer (CRC) ineffective. Whether ursolic acid, a component of numerous medicinal plants, either alone or in combination with capecitabine, can inhibit the growth and metastasis of human CRC was investigated. Experimental design: The effect of ursolic acid on proliferation of CRC cell lines was examined by mitochondrial dye uptake assay, apoptosis by esterase staining, NF-κB activation by DNA-binding assay, and protein expression by Western blot. The effect of ursolic acid on the growth and chemosensitization was also examined in orthotopically implanted CRC in nude mice. Results: We found that ursolic acid inhibited the proliferation of different colon cancer cell lines. This is correlated with inhibition of constitutive NF-κB activation and downregulation of cell survival (Bcl-xL, Bcl-2, cFLIP, and survivin), proliferative (cyclin D1), and metastatic (MMP-9, VEGF, and ICAM-1) proteins. When examined in an orthotopic nude mouse model, ursolic acid significantly inhibited tumor volume, ascites formation, and distant organ metastasis, and this effect was enhanced with capecitabine. Immunohistochemistry of tumor tissue indicated that ursolic acid downregulated biomarkers of proliferation (Ki-67) and microvessel density (CD31). This effect was accompanied by suppression of NF-κB, STAT3, and β-catenin. In addition, ursolic acid suppressed EGF receptor (EGFR) and induced p53 and p21 expression. We also observed bioavailability of ursolic acid in the serum and tissue of animals. Conclusion: Overall, our results show that ursolic acid can inhibit the growth and metastasis of CRC and further enhance the therapeutic effects of capecitabine through the suppression of multiple biomarkers linked to inflammation, proliferation, invasion, angiogenesis, and metastasis. Clin Cancer Res; 18(18); 4942–53. ©2012 AACR.


Expert Opinion on Investigational Drugs | 2007

Back to basics: how natural products can provide the basis for new therapeutics

Amit Deorukhkar; Sunil Krishnan; Gautam Sethi; Bharat B. Aggarwal

Phytochemicals have potent antitumor properties and have provided multiple active compounds in the past. Although there is an increasing focus on ‘designer’ targeted therapeutic anticancer agents, the broad spectrum of activity of natural products across multiple signaling pathways remains inadequately explored. The chemical diversity, structural complexity, affordability, lack of substantial toxic effects and inherent biologic activity of natural products makes them ideal candidates for new therapeutics. Natural products not only disrupt aberrant signaling pathways leading to cancer (i.e., proliferation, deregulation of apoptosis, angiogenesis, invasion and metastasis) but also synergize with chemotherapy and radiotherapy. This review focuses on the mechanism of action of key natural products and promising preclinical data on their efficacy as anticancer agents, as single agents and in combination with standard therapies.

Collaboration


Dive into the Amit Deorukhkar's collaboration.

Top Co-Authors

Avatar

Sunil Krishnan

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Parmeswaran Diagaradjane

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Sushovan Guha

University of Texas Health Science Center at Houston

View shared research outputs
Top Co-Authors

Avatar

Bharat B. Aggarwal

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Juri G. Gelovani

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Shujun Shentu

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Ajaikumar B. Kunnumakkara

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Zhimin Tong

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Cullen M. Taniguchi

University of Texas MD Anderson Cancer Center

View shared research outputs
Top Co-Authors

Avatar

Dipen M. Maru

University of Texas MD Anderson Cancer Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge