Cullen M. Taniguchi
University of Texas MD Anderson Cancer Center
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Cullen M. Taniguchi.
Nature | 2008
Yu-Hua Tseng; Efi Kokkotou; Tim J. Schulz; Tian Lian Huang; Jonathon N. Winnay; Cullen M. Taniguchi; Thien T. Tran; Ryo Suzuki; Daniel O. Espinoza; Yuji Yamamoto; Molly J. Ahrens; Andrew T. Dudley; Andrew W. Norris; Rohit N. Kulkarni; C. Ronald Kahn
Adipose tissue is central to the regulation of energy balance. Two functionally different types of fat are present in mammals: white adipose tissue, the primary site of triglyceride storage, and brown adipose tissue, which is specialized in energy expenditure and can counteract obesity. Factors that specify the developmental fate and function of white and brown adipose tissue remain poorly understood. Here we demonstrate that whereas some members of the family of bone morphogenetic proteins (BMPs) support white adipocyte differentiation, BMP7 singularly promotes differentiation of brown preadipocytes even in the absence of the normally required hormonal induction cocktail. BMP7 activates a full program of brown adipogenesis including induction of early regulators of brown fat fate PRDM16 (PR-domain-containing 16; ref. 4) and PGC-1α (peroxisome proliferator-activated receptor-γ (PPARγ) coactivator-1α; ref. 5), increased expression of the brown-fat-defining marker uncoupling protein 1 (UCP1) and adipogenic transcription factors PPARγ and CCAAT/enhancer-binding proteins (C/EBPs), and induction of mitochondrial biogenesis via p38 mitogen-activated protein (MAP) kinase-(also known as Mapk14) and PGC-1-dependent pathways. Moreover, BMP7 triggers commitment of mesenchymal progenitor cells to a brown adipocyte lineage, and implantation of these cells into nude mice results in development of adipose tissue containing mostly brown adipocytes. Bmp7 knockout embryos show a marked paucity of brown fat and an almost complete absence of UCP1. Adenoviral-mediated expression of BMP7 in mice results in a significant increase in brown, but not white, fat mass and leads to an increase in energy expenditure and a reduction in weight gain. These data reveal an important role of BMP7 in promoting brown adipocyte differentiation and thermogenesis in vivo and in vitro, and provide a potential new therapeutic approach for the treatment of obesity.
Journal of Clinical Investigation | 2005
Cullen M. Taniguchi; Kohjiro Ueki; C. Ronald Kahn
Hepatic insulin resistance is a critical component in the development of type 2 diabetes mellitus. In many cases, insulin resistance in liver is associated with reduced expression of both major insulin receptor substrate (IRS) proteins, IRS-1 and IRS-2. To investigate the specific functions of IRS-1 and IRS-2 in regulating liver function in vivo, we developed an adenovirus-mediated RNA interference technique in which short hairpin RNAs (shRNAs) are used to knock down IRS-1, IRS-2, or both, by 70-80% in livers of WT mice. The knockdown of IRS-1 resulted in an upregulation of the gluconeogenic enzymes glucose-6 phosphatase and phosphoenolpyruvate carboxykinase, as well as a marked increase in hepatic nuclear factor-4 alpha. Decreased IRS-1 was also associated with a decrease in glucokinase expression and a trend toward increased blood glucose, whereas knockdown of IRS-2 resulted in the upregulation of lipogenic enzymes SREBP-1c and fatty acid synthase, as well as increased hepatic lipid accumulation. The concomitant injection of IRS-1 and IRS-2 adenoviral shRNAs resulted in systemic insulin resistance, glucose intolerance, and hepatic steatosis. The alterations in the dual-knockdown mice were associated with defective Akt activation and Foxo1 phosphorylation. Taken together, our results demonstrate that hepatic IRS-1 and IRS-2 have complementary roles in the control of hepatic metabolism, with IRS-1 more closely linked to glucose homeostasis and IRS-2 more closely linked to lipid metabolism.
Nature Cell Biology | 2005
Yu-Hua Tseng; Atul J. Butte; Efi Kokkotou; Vijay K. Yechoor; Cullen M. Taniguchi; Kristina M. Kriauciunas; Aaron M. Cypess; Michio Niinobe; Kazuaki Yoshikawa; Mary-Elizabeth Patti; C. Ronald Kahn
The insulin/IGF-1 (insulin-like growth factor 1) signalling pathway promotes adipocyte differentiation via complex signalling networks. Here, using microarray analysis of brown preadipocytes that are derived from wild-type and insulin receptor substrate (Irs) knockout animals that exhibit progressively impaired differentiation, we define 374 genes/expressed-sequence tags whose expression in preadipocytes correlates with the ultimate ability of the cells to differentiate. Many of these genes, including preadipocyte factor-1 (Pref-1) and multiple members of the Wnt signalling pathway, are related to early adipogenic events. Necdin is also markedly increased in Irs knockout cells that cannot differentiate, and knockdown of necdin restores brown adipogenesis with downregulation of Pref-1 and Wnt10a expression. Insulin receptor substrate proteins regulate a necdin–E2F4 interaction that represses peroxisome-proliferator-activated receptor γ (PPARγ) transcription via a cyclic AMP response element binding protein (CREB)-dependent pathway. Together these define a key signalling network that is involved in brown preadipocyte determination.
Proceedings of the National Academy of Sciences of the United States of America | 2006
Cullen M. Taniguchi; Thien T. Tran; Tatsuya Kondo; Ji Luo; Kohjiro Ueki; Lewis C. Cantley; C. Ronald Kahn
The phosphoinositide 3-kinase (PI3K) pathway is central to the metabolic actions of insulin on liver. Here, we show that mice with a liver-specific deletion of the p85α regulatory subunit of PI3K (L-Pik3r1KO) exhibit a paradoxical improvement of hepatic and peripheral insulin sensitivity. Although PI3K enzymatic activity is diminished in L-Pik3r1KO livers because of a reduced level of regulatory and catalytic subunits of PI3K, insulin-stimulated Akt activity is actually increased. This increased Akt activity correlates with increased phosphatidylinositol (3,4,5)-trisphosphate levels which are due, at least in part, to diminished activity of the (3,4,5)-trisphosphate phosphatase PTEN. Thus, the regulatory subunit p85α is a critical modulator of insulin sensitivity in vivo not only because of its effects on PI3K activation, but also as a regulator of PTEN activity.
Nature Medicine | 2013
Cullen M. Taniguchi; Elizabeth C. Finger; Adam J. Krieg; Colleen Wu; Anh N. Diep; Edward L. LaGory; Kevin Wei; Lisa M McGinnis; Jenny Yuan; Calvin J. Kuo; Amato J. Giaccia
Signaling initiated by hypoxia and insulin powerfully alters cellular metabolism. The protein stability of hypoxia-inducible factor-1 alpha (Hif-1α) and Hif-2α is regulated by three prolyl hydroxylase domain–containing protein isoforms (Phd1, Phd2 and Phd3). Insulin receptor substrate-2 (Irs2) is a critical mediator of the anabolic effects of insulin, and its decreased expression contributes to the pathophysiology of insulin resistance and diabetes. Although Hif regulates many metabolic pathways, it is unknown whether the Phd proteins regulate glucose and lipid metabolism in the liver. Here, we show that acute deletion of hepatic Phd3, also known as Egln3, improves insulin sensitivity and ameliorates diabetes by specifically stabilizing Hif-2α, which then increases Irs2 transcription and insulin-stimulated Akt activation. Hif-2α and Irs2 are both necessary for the improved insulin sensitivity, as knockdown of either molecule abrogates the beneficial effects of Phd3 knockout on glucose tolerance and insulin-stimulated Akt phosphorylation. Augmenting levels of Hif-2α through various combinations of Phd gene knockouts did not further improve hepatic metabolism and only added toxicity. Thus, isoform-specific inhibition of Phd3 could be exploited to treat type 2 diabetes without the toxicity that could occur with chronic inhibition of multiple Phd isoforms.
Cancer Research | 2010
Cullen M. Taniguchi; Jonathon N. Winnay; Tatsuya Kondo; Roderick T. Bronson; Alexander R. Guimaraes; Jose O. Aleman; Ji Luo; Gregory Stephanopoulos; Ralph Weissleder; Lewis C. Cantley; C. Ronald Kahn
Phosphoinositide 3-kinase (PI3K) plays a critical role in tumorigenesis, and the PI3K p85 regulatory subunit exerts both positive and negative effects on signaling. Expression of Pik3r1, the gene encoding p85, is decreased in human prostate, lung, ovarian, bladder, and liver cancers, consistent with the possibility that p85 has tumor suppressor properties. We tested this hypothesis by studying mice with a liver-specific deletion of the Pik3r1 gene. These mice exhibited enhanced insulin and growth factor signaling and progressive changes in hepatic pathology, leading to the development of aggressive hepatocellular carcinomas with pulmonary metastases. Liver tumors that arose exhibited markedly elevated levels of phosphatidylinositol (3,4,5)-trisphosphate, along with Akt activation and decreased PTEN expression, at both the mRNA and protein levels. Together, these results substantiate the concept that the p85 subunit of PI3K has a tumor-suppressive role in the liver and possibly other tissues.
Molecular and Cellular Biology | 2007
Cullen M. Taniguchi; Jose O. Aleman; Kohjiro Ueki; Ji Luo; Tomoichiro Asano; Hideaki Kaneto; Gregory Stephanopoulos; Lewis C. Cantley; C. Ronald Kahn
ABSTRACT Insulin resistance is a defining feature of type 2 diabetes and the metabolic syndrome. While the molecular mechanisms of insulin resistance are multiple, recent evidence suggests that attenuation of insulin signaling by c-Jun N-terminal kinase (JNK) may be a central part of the pathobiology of insulin resistance. Here we demonstrate that the p85α regulatory subunit of phosphoinositide 3-kinase (PI3K), a key mediator of insulins metabolic actions, is also required for the activation of JNK in states of insulin resistance, including high-fat diet-induced obesity and JNK1 overexpression. The requirement of the p85α regulatory subunit for JNK occurs independently of its role as a component of the PI3K heterodimer and occurs only in response to specific stimuli, namely, insulin and tunicamycin, a chemical that induces endoplasmic reticulum stress. We further show that insulin and p85 activate JNK by via cdc42 and MKK4. The activation of this cdc42/JNK pathway requires both an intact N terminus and functional SH2 domains within the C terminus of the p85α regulatory subunit. Thus, p85α plays a dual role in regulating insulin sensitivity and may mediate cross talk between the PI3K and stress kinase pathways.
Journal of Biological Chemistry | 2003
Amelia J. Entingh; Cullen M. Taniguchi; C. Ronald Kahn
Insulin is a potent inducer of adipogenesis, and differentiation of adipocytes requires many components of the insulin signaling pathway, including the insulin receptor substrate IRS-1 and phosphatidylinositol 3-kinase (PI3K). Brown pre-adipocytes in culture exhibit low levels of insulin receptor (IR), and during differentiation there is both an increase in total IR levels and a shift in the alternatively spliced forms of IR from the A isoform (–exon 11) to the B isoform (+exon 11). Brown pre-adipocyte cell lines from insulin receptor-deficient mice exhibit dramatically impaired differentiation and an inability to regulate alternative splicing of the insulin receptor. Surprisingly, re-expression of either splice isoform of IR in the IR-deficient cells fails to rescue differentiation in these cells. Likewise, overexpression of IR in control IRlox cells also results in inhibition of differentiation and a failure to accumulate expression of the adipogenic markers peroxisome proliferator-activated receptor gamma, Glut4, and fatty acid synthase, although cells overexpressing IR retain the ability to activate PI3K and down-regulate mitogen-activated protein kinase (MAPK) phosphorylation. Thus, differentiation of brown adipocytes requires a timed and regulated expression of IR, and either the absence or overabundance of insulin receptors in these cells dramatically inhibits differentiation.
The FASEB Journal | 2012
Kristy L. Townsend; Ryo Suzuki; Tian Lian Huang; Enxuan Jing; Tim J. Schulz; Kevin Lee; Cullen M. Taniguchi; Daniel O. Espinoza; Lindsay E. McDougall; Hongbin Zhang; Tong-Chuan He; Efi Kokkotou; Yu-Hua Tseng
Body weight is regulated by coordinating energy intake and energy expenditure. Transforming growth factor β (TGFβ)/bone morphogenetic protein (BMP) signaling has been shown to regulate energy balance in lower organisms, but whether a similar pathway exists in mammals is unknown. We have previously demonstrated that BMP7 can regulate brown adipogenesis and energy expenditure. In the current study, we have uncovered a novel role for BMP7 in appetite regulation. Systemic treatment of diet‐induced obese mice with BMP7 resulted in increased energy expenditure and decreased food intake, leading to a significant reduction in body weight and improvement of metabolic syndrome. Similar degrees of weight loss with reduced appetite were also observed in BMP7‐treated ob/ob mice, suggesting a leptin‐independent mechanism utilized by BMP7. Intracerebroventricular administration of BMP7 to mice led to an acute decrease in food intake, which was mediated, at least in part, by a central rapamycin‐sensitive mTOR‐p70S6 kinase pathway. Together, these results underscore the importance of BMP7 in regulating both food intake and energy expenditure, and suggest new therapeutic approaches for obesity and its comorbidities.— Townsend, K. L., Suzuki, R., Huang, T. L., Jing, E., Schulz, T. J., Lee, K., Taniguchi, C. M., Espinoza, D. O., McDougall, L. E., Zhang, H., He, T.‐C., Kokkotou, E., Tseng, Y.‐H. Bone morphogenetic protein 7 (BMP7) reverses obesity and regulates appetite through a central mTOR pathway. FASEB J. 26, 2187‐2196 (2012). www.fasebj.org
Nature Medicine | 2013
Kevin Wei; Stephanie M. Piecewicz; Lisa M McGinnis; Cullen M. Taniguchi; Stanley J. Wiegand; Keith D. Anderson; Carol W.M. Chan; Kimberly X. Mulligan; David Kuo; Jenny Yuan; Mario Vallon; Lori C. Morton; Etienne Lefai; M. Celeste Simon; Jacquelyn J. Maher; Gilles Mithieux; Fabienne Rajas; Justin P. Annes; Owen P. McGuinness; Gavin Thurston; Amato J. Giaccia; Calvin J. Kuo
Insulin initiates diverse hepatic metabolic responses, including gluconeogenic suppression and induction of glycogen synthesis and lipogenesis. The liver possesses a rich sinusoidal capillary network with a higher degree of hypoxia and lower gluconeogenesis in the perivenous zone as compared to the rest of the organ. Here, we show that diverse vascular endothelial growth factor (VEGF) inhibitors improved glucose tolerance in nondiabetic C57BL/6 and diabetic db/db mice, potentiating hepatic insulin signaling with lower gluconeogenic gene expression, higher glycogen storage and suppressed hepatic glucose production. VEGF inhibition induced hepatic hypoxia through sinusoidal vascular regression and sensitized liver insulin signaling through hypoxia-inducible factor-2α (Hif-2α, encoded by Epas1) stabilization. Notably, liver-specific constitutive activation of HIF-2α, but not HIF-1α, was sufficient to augment hepatic insulin signaling through direct and indirect induction of insulin receptor substrate-2 (Irs2), an essential insulin receptor adaptor protein. Further, liver Irs2 was both necessary and sufficient to mediate Hif-2α and Vegf inhibition effects on glucose tolerance and hepatic insulin signaling. These results demonstrate an unsuspected intersection between Hif-2α−mediated hypoxic signaling and hepatic insulin action through Irs2 induction, which can be co-opted by Vegf inhibitors to modulate glucose metabolism. These studies also indicate distinct roles in hepatic metabolism for Hif-1α, which promotes glycolysis, and Hif-2α, which suppresses gluconeogenesis, and suggest new treatment approaches for type 2 diabetes mellitus.