Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit K. Galande is active.

Publication


Featured researches published by Amit K. Galande.


Journal of Antimicrobial Chemotherapy | 2010

Repurposing FDA-approved drugs to combat drug-resistant Acinetobacter baumannii

Sidharth Chopra; Maria Torres-Ortiz; Leslie A. Hokama; Peter B. Madrid; Mary J. Tanga; Kristien Mortelmans; Amit K. Galande

OBJECTIVE The rising occurrence of drug-resistant pathogens accentuates the need to identify novel antibiotics. We wanted to identify new scaffolds for drug discovery by repurposing FDA-approved drugs against Acinetobacter baumannii, an emerging Gram-negative nosocomial drug-resistant pathogen. MATERIALS AND METHODS In this study, we screened 1040 FDA-approved drugs against drug-susceptible A. baumannii ATCC 17978 and drug-resistant A. baumannii BAA-1605. RESULTS AND DISCUSSION Twenty compounds exhibited significant antimicrobial activity (MIC ≤8 mg/L) against ATCC 17978 while only five compounds showed such activity against BAA-1605. Among the most notable results, tyrothricin, a bactericidal antibiotic typically active only against Gram-positive bacteria, exhibited equipotent activity against both strains. CONCLUSION The paucity of identified compounds active against drug-resistant A. baumannii exemplifies its ability to resist antimicrobials as well as the resilience of drug-resistant Gram-negative pathogens. Repurposing of approved drugs is a viable alternative to de novo drug discovery and development.


Virulence | 2011

The virulence of the opportunistic fungal pathogen Aspergillus fumigatus requires cooperation between the endoplasmic reticulum-associated degradation pathway (ERAD) and the unfolded protein response (UPR)

Daryl L. Richie; Xizhi Feng; Lukas Hartl; Vishukumar Aimanianda; Karthik Krishnan; Margaret V. Powers-Fletcher; Douglas S. Watson; Amit K. Galande; Stephanie White; Taryn Willett; Jean-Paul Latgé; Judith C. Rhodes; David S. Askew

The filamentous fungal pathogen Aspergillus fumigatus secretes hydrolytic enzymes to acquire nutrients from host tissues. The production of these enzymes exerts stress on the endoplasmic reticulum (ER), which is alleviated by two stress responses: the unfolded protein response (UPR), which adjusts the protein folding capacity of the ER, and ER-associated degradation (ERAD), which disposes of proteins that fail to fold correctly. In this study, we examined the contribution of these integrated pathways to the growth and virulence of A. fumigatus, focusing on the ERAD protein DerA and the master regulator of the UPR, HacA. A ΔderA mutant grew normally and showed no increase in sensitivity to ER stress. However, expression of the UPR target gene bipA was constitutively elevated in this strain, suggesting that the UPR was compensating for the absence of DerA function. To test this, the UPR was disrupted by deleting the hacA gene. The combined loss of derA and hacA caused a more severe reduction in hyphal growth, antifungal drug resistance and protease secretion than the loss of either gene alone, suggesting that DerA and HacA cooperate to support these functions. Moreover, the ΔderA/ΔhacA mutant was avirulent in a mouse model of invasive aspergillosis, which contrasted the wild type virulence of ΔderA and the reduced virulence of the ΔhacA mutant. Taken together, these data demonstrate that DerA cooperates with the UPR to support the expression of virulence-related attributes of A. fumigatus.


Life Sciences | 2013

Modulation of the cannabinoid receptors by hemopressin peptides

Martha G. Bomar; Amit K. Galande

Changes in the endocannabinoid system are implicated in numerous diseases, making it an attractive target for pharmaceutical development. The endocannabinoid receptors have traditionally been thought to act through the effects of lipophilic messengers called cannabinoids. The exciting finding of endocannabinoid system modulation by the nonapeptide hemopressin and its N-terminal extensions has highlighted the complexity of cannabinoid biology and pharmacology and sparked interest for therapeutic purposes. However, many questions surrounding the generation and regulation of the hemopressin peptides, the self-assembly of hemopressin and the potential for drug development based on hemopressin remain and are discussed in this review.


BioTechniques | 2011

Robust substrate profiling method reveals striking differences in specificities of serum and lung fluid proteases.

Douglas S. Watson; Kalyani Jambunathan; David S. Askew; Amit K. Galande

Proteases are candidate biomarkers and therapeutic targets for many diseases. Sensitive and robust techniques are needed to quantify proteolytic activities within the complex biological milieu. We hypothesized that a combinatorial protease substrate library could be used effectively to identify similarities and differences between serum and bronchoalveolar lavage fluid (BALF), two body fluids that are clinically important for developing targeted therapies and diagnostics. We used a concise library of fluorogenic probes to map the protease substrate specificities of serum and BALF from guinea pigs. Differences in the proteolytic fingerprints of the two fluids were striking: serum proteases cleaved substrates containing cationic residues and proline, whereas BALF proteases cleaved substrates containing aliphatic and aromatic residues. Notably, cleavage of proline-containing substrates dominated all other protease activities in both human and guinea pig serum. This substrate profiling approach provides a foundation for quantitative comparisons of protease specificities between complex biological samples.


Proteomics Clinical Applications | 2014

Sample collection in clinical proteomics—Proteolytic activity profile of serum and plasma

Kalyani Jambunathan; Amit K. Galande

Proteolytic enzymes are promising diagnostic targets since they play key roles in diverse physiological processes and have been implicated in numerous human diseases. Human blood is a relatively noninvasive source for disease‐specific protease biomarker detection and subsequent translation into diagnostic tests. However, the choice of serum or plasma, and more specifically, which anticoagulant to choose in plasma preparation, is important to address in the sample preparation phase of biomarker discovery.


PLOS ONE | 2011

Impact of the lectin chaperone calnexin on the stress response, virulence and proteolytic secretome of the fungal pathogen Aspergillus fumigatus.

Margaret V. Powers-Fletcher; Kalyani Jambunathan; Jordan L. Brewer; Karthik Krishnan; Xizhi Feng; Amit K. Galande; David S. Askew

Calnexin is a membrane-bound lectin chaperone in the endoplasmic reticulum (ER) that is part of a quality control system that promotes the accurate folding of glycoproteins entering the secretory pathway. We have previously shown that ER homeostasis is important for virulence of the human fungal pathogen Aspergillus fumigatus, but the contribution of calnexin has not been explored. Here, we determined the extent to which A. fumigatus relies on calnexin for growth under conditions of environmental stress and for virulence. The calnexin gene, clxA, was deleted from A. fumigatus and complemented by reconstitution with the wild type gene. Loss of clxA altered the proteolytic secretome of the fungus, but had no impact on growth rates in either minimal or complex media at 37°C. However, the ΔclxA mutant was growth impaired at temperatures above 42°C and was hypersensitive to acute ER stress caused by the reducing agent dithiothreitol. In contrast to wild type A. fumigatus, ΔclxA hyphae were unable to grow when transferred to starvation medium. In addition, depleting the medium of cations by chelation prevented ΔclxA from sustaining polarized hyphal growth, resulting in blunted hyphae with irregular morphology. Despite these abnormal stress responses, the ΔclxA mutant remained virulent in two immunologically distinct models of invasive aspergillosis. These findings demonstrate that calnexin functions are needed for growth under conditions of thermal, ER and nutrient stress, but are dispensable for surviving the stresses encountered in the host environment.


FEBS Letters | 2012

Comparative analysis of the substrate preferences of two post-proline cleaving endopeptidases, prolyl oligopeptidase and fibroblast activation protein α

Kalyani Jambunathan; Douglas S. Watson; Aaron N. Endsley; Amit K. Galande

Post‐proline cleaving peptidases are promising therapeutic targets for neurodegenerative diseases, psychiatric conditions, metabolic disorders, and many cancers. Prolyl oligopeptidase (POP; E.C. 3.4.21.26) and fibroblast activation protein α (FAP; E.C. 3.4.24.B28) are two post‐proline cleaving endopeptidases with very similar substrate specificities. Both enzymes are implicated in numerous human diseases, but their study is impeded by the lack of specific substrate probes. We interrogated a combinatorial library of proteolytic substrates and identified novel and selective substrates of POP and FAP. These new sequences will be useful as probes for fundamental biochemical study, scaffolds for inhibitor design, and triggers for controlled drug delivery.


PLOS ONE | 2011

Substrate Specifity Profiling of the Aspergillus fumigatus Proteolytic Secretome Reveals Consensus Motifs with Predominance of Ile/Leu and Phe/Tyr

Douglas S. Watson; Xizhi Feng; David S. Askew; Kalyani Jambunathan; Amit K. Galande

Background The filamentous fungus Aspergillus fumigatus (AF) can cause devastating infections in immunocompromised individuals. Early diagnosis improves patient outcomes but remains challenging because of the limitations of current methods. To augment the clinicians toolkit for rapid diagnosis of AF infections, we are investigating AF secreted proteases as novel diagnostic targets. The AF genome encodes up to 100 secreted proteases, but fewer than 15 of these enzymes have been characterized thus far. Given the large number of proteases in the genome, studies focused on individual enzymes may overlook potential diagnostic biomarkers. Methodology and Principal Findings As an alternative, we employed a combinatorial library of internally quenched fluorogenic probes (IQFPs) to profile the global proteolytic secretome of an AF clinical isolate in vitro. Comparative protease activity profiling revealed 212 substrate sequences that were cleaved by AF secreted proteases but not by normal human serum. A central finding was that isoleucine, leucine, phenylalanine, and tyrosine predominated at each of the three variable positions of the library (44.1%, 59.1%, and 57.0%, respectively) among substrate sequences cleaved by AF secreted proteases. In contrast, fewer than 10% of the residues at each position of cleaved sequences were cationic or anionic. Consensus substrate motifs were cleaved by thermostable serine proteases that retained activity up to 50°C. Precise proteolytic cleavage sites were reliably determined by a simple, rapid mass spectrometry-based method, revealing predominantly non-prime side specificity. A comparison of the secreted protease activities of three AF clinical isolates revealed consistent protease substrate specificity fingerprints. However, secreted proteases of A. flavus, A. nidulans, and A. terreus strains exhibited striking differences in their proteolytic signatures. Conclusions This report provides proof-of-principle for the use of protease substrate specificity profiling to define the proteolytic secretome of Aspergillus fumigatus. Expansion of this technique to protease secretion during infection could lead to development of novel approaches to fungal diagnosis.


PLOS ONE | 2013

Rapid Identification of Sequences for Orphan Enzymes to Power Accurate Protein Annotation

Kevin Ramkissoon; Jennifer K. Miller; Sunil Ojha; Douglas S. Watson; Martha G. Bomar; Amit K. Galande; Alexander G. Shearer

The power of genome sequencing depends on the ability to understand what those genes and their proteins products actually do. The automated methods used to assign functions to putative proteins in newly sequenced organisms are limited by the size of our library of proteins with both known function and sequence. Unfortunately this library grows slowly, lagging well behind the rapid increase in novel protein sequences produced by modern genome sequencing methods. One potential source for rapidly expanding this functional library is the “back catalog” of enzymology – “orphan enzymes,” those enzymes that have been characterized and yet lack any associated sequence. There are hundreds of orphan enzymes in the Enzyme Commission (EC) database alone. In this study, we demonstrate how this orphan enzyme “back catalog” is a fertile source for rapidly advancing the state of protein annotation. Starting from three orphan enzyme samples, we applied mass-spectrometry based analysis and computational methods (including sequence similarity networks, sequence and structural alignments, and operon context analysis) to rapidly identify the specific sequence for each orphan while avoiding the most time- and labor-intensive aspects of typical sequence identifications. We then used these three new sequences to more accurately predict the catalytic function of 385 previously uncharacterized or misannotated proteins. We expect that this kind of rapid sequence identification could be efficiently applied on a larger scale to make enzymology’s “back catalog” another powerful tool to drive accurate genome annotation.


Methods of Molecular Biology | 2013

In silico systems biology approaches for the identification of antimicrobial targets.

Malabika Sarker; Carolyn L. Talcott; Amit K. Galande

Classical antibiotic discovery efforts have relied mainly on molecular library screening coupled with target-based lead optimization. The conventional approaches are unable to tackle the emergence of antibiotic resistance and are failing to provide understanding of multiple mechanisms behind drug actions and the off-target effects. These insufficiencies have prompted researchers to focus on a multidisciplinary approach of systems biology-based antibiotic discovery. Systems biology is capable of providing a big-picture view for therapeutic targets through interconnected networks of biochemical reactions derived from both experimental and computational techniques. In this chapter, we have compiled software tools and databases that are typically used for target identification through in silico analyses. We have also identified enzyme- and broad-spectrum metabolite-based drug targets that have emerged through in silico systems microbiology.

Collaboration


Dive into the Amit K. Galande's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David S. Askew

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Xizhi Feng

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge