Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where David S. Askew is active.

Publication


Featured researches published by David S. Askew.


BMC Microbiology | 2005

Doxycycline-regulated gene expression in the opportunistic fungal pathogen Aspergillus fumigatus

Keith Vogt; Ruchi Bhabhra; Judith C. Rhodes; David S. Askew

BackgroundAlthough Aspergillus fumigatus is an important human fungal pathogen there are few expression systems available to study the contribution of specific genes to the growth and virulence of this opportunistic mould. Regulatable promoter systems based upon prokaryotic regulatory elements in the E. coli tetracycline-resistance operon have been successfully used to manipulate gene expression in several organisms, including mice, flies, plants, and yeast. However, the system has not yet been adapted for Aspergillus spp.ResultsHere we describe the construction of plasmid vectors that can be used to regulate gene expression in A. fumigatus using a simple co-transfection approach. Vectors were generated in which the tetracycline transactivator (tTA) or the reverse tetracycline transactivator (rtTA2s-M2) are controlled by the A. nidulans gpdA promoter. Dominant selectable cassettes were introduced into each plasmid, allowing for selection following gene transfer into A. fumigatus by incorporating phleomycin or hygromycin into the medium. To model an essential gene under tetracycline regulation, the E. coli hygromycin resistance gene, hph, was placed under the control of seven copies of the TetR binding site (tetO7) in a plasmid vector and co-transfected into A. fumigatus protoplasts together with one of the two transactivator plasmids. Since the hph gene is essential to A. fumigatus in the presence of hygromycin, resistance to hygromycin was used as a marker of hph reporter gene expression. Transformants were identified in which the expression of tTA conferred hygromycin resistance by activating expression of the tetO7-hph reporter gene, and the addition of doxycycline to the medium suppressed hygromycin resistance in a dose-dependent manner. Similarly, transformants were identified in which expression of rtTA2s-M2 conferred hygromycin resistance only in the presence of doxycycline. The levels of doxycycline required to regulate expression of the tetO7-hph reporter gene were within non-toxic ranges for this organism, and low-iron medium was shown to reduce the amount of doxycycline required to accomplish regulation.ConclusionsThe vectors described in this report provide a new set of options to experimentally manipulate the level of specific gene products in A. fumigatus


PLOS Pathogens | 2009

A role for the unfolded protein response (UPR) in virulence and antifungal susceptibility in Aspergillus fumigatus

Daryl L. Richie; Lukas Hartl; Vishukumar Aimanianda; Michael S. Winters; Kevin K. Fuller; Michael D. Miley; Stephanie White; Jason W. McCarthy; Jean Paul Latgé; Marta Feldmesser; Judith C. Rhodes; David S. Askew

Filamentous fungi rely heavily on the secretory pathway, both for the delivery of cell wall components to the hyphal tip and the production and secretion of extracellular hydrolytic enzymes needed to support growth on polymeric substrates. Increased demand on the secretory system exerts stress on the endoplasmic reticulum (ER), which is countered by the activation of a coordinated stress response pathway termed the unfolded protein response (UPR). To determine the contribution of the UPR to the growth and virulence of the filamentous fungal pathogen Aspergillus fumigatus, we disrupted the hacA gene, encoding the major transcriptional regulator of the UPR. The ΔhacA mutant was unable to activate the UPR in response to ER stress and was hypersensitive to agents that disrupt ER homeostasis or the cell wall. Failure to induce the UPR did not affect radial growth on rich medium at 37°C, but cell wall integrity was disrupted at 45°C, resulting in a dramatic loss in viability. The ΔhacA mutant displayed a reduced capacity for protease secretion and was growth-impaired when challenged to assimilate nutrients from complex substrates. In addition, the ΔhacA mutant exhibited increased susceptibility to current antifungal agents that disrupt the membrane or cell wall and had attenuated virulence in multiple mouse models of invasive aspergillosis. These results demonstrate the importance of ER homeostasis to the growth and virulence of A. fumigatus and suggest that targeting the UPR, either alone or in combination with other antifungal drugs, would be an effective antifungal strategy.


Infection and Immunity | 2004

Disruption of the Aspergillus fumigatus Gene Encoding Nucleolar Protein CgrA Impairs Thermotolerant Growth and Reduces Virulence

Ruchi Bhabhra; Michael D. Miley; Eleftherios Mylonakis; Doug Boettner; Jarrod R. Fortwendel; John C. Panepinto; Michael Postow; Judith C. Rhodes; David S. Askew

ABSTRACT Aspergillus fumigatus CgrA is the ortholog of a yeast nucleolar protein that functions in ribosome synthesis. To determine how CgrA contributes to the virulence of A. fumigatus, a ΔcgrA mutant was constructed by targeted gene disruption, and the mutant was reconstituted to wild type by homologous introduction of a functional cgrA gene. The ΔcgrA mutant had the same growth rate as the wild type at room temperature. However, when the cultures were incubated at 37°C, a condition that increased the growth rate of the wild-type and reconstituted strains approximately threefold, the ΔcgrA mutant was unable to increase its growth rate. The absence of cgrA function caused a delay in both the onset and rate of germination at 37°C but had little effect on germination at room temperature. The ΔcgrA mutant was significantly less virulent than the wild-type or reconstituted strain in immunosuppressed mice and was associated with smaller fungal colonies in lung tissue. However, this difference was less pronounced in a Drosophila infection model at 25°C, which correlated with the comparable growth rates of the two strains at this temperature. To determine the intracellular localization of CgrA, the protein was tagged at the C terminus with green fluorescent protein, and costaining with propidium iodide revealed a predominantly nucleolar localization of the fusion protein in living hyphae. Together, these findings establish the intracellular localization of CgrA in A. fumigatus and demonstrate that cgrA is required for thermotolerant growth and wild-type virulence of the organism.


Journal of Immunology | 2002

Regulation of class II MHC expression in APCs: Roles of types I, III, and IV class II transactivator

Rish K. Pai; David S. Askew; W. Henry Boom; Clifford V. Harding

Class II transactivator (CIITA) is necessary for expression of class II MHC (MHC-II) molecules. In mice, CIITA expression is regulated by three promoters (pI, pIII, and pIV), producing types I, III, and IV CIITA. The relative roles of different CIITA types remain unclear. Unstimulated bone marrow-derived macrophages expressed low levels of CIITA mRNA; type I CIITA was nine times more abundant than type IV (type III CIITA was barely detected). Exposure to IFN-γ (6 h) dramatically increased types I and IV CIITA mRNA to similar absolute levels. Type IV CIITA declined over time, but type I was stable for over 72 h. Thus, the dominant form of CIITA evolved with time during activation by IFN-γ, and type I CIITA explained prolonged expression of MHC-II by macrophages. mRNA half-life was shorter for type I than type IV CIITA, suggesting that sustained transcription contributed to stable expression of type I CIITA induced by IFN-γ. Splenic B cells expressed mRNA for type III CIITA but very little for types I or IV. Treatment with IL-4 increased surface expression of MHC-II protein, but mRNA for MHC-II and CIITA (total, I, III, and IV) remained unchanged, suggesting posttranslational regulation. Splenic dendritic cells expressed type I CIITA but little type III or IV; CpG DNA induced their maturation and decreased types I and III CIITA, consistent with decreased MHC-II protein synthesis. CIITA types differ in regulation in various APCs under different stimuli, and the predominant type of CIITA varies at different stages of APC activation.


Trends in Endocrinology and Metabolism | 2011

High density lipoprotein: it's not just about lipid transport anymore

Scott M. Gordon; Susanna M. Hofmann; David S. Askew; W. Sean Davidson

Plasma levels of high density lipoprotein cholesterol (HDL-C) have long been associated with protection against cardiovascular disease (CVD) in large populations. However, HDL-C has been significantly less useful for predicting CVD risk in individual patients. This has ignited a new debate on the merits of measuring HDL quantity versus quality in terms of protective potential. In addition, numerous recent studies have begun to uncover HDL functions that vary surprisingly from traditional lipid transport roles. In this paper, we review recent findings that point to important functions for HDL that go well beyond lipid transport. These discoveries suggest that HDL might be a platform that mediates protection from a host of disease states ranging from CVD to diabetes to infectious disease.


Medical Mycology | 2005

Thermotolerance and virulence of Aspergillus fumigatus: role of the fungal nucleolus

Ruchi Bhabhra; David S. Askew

The ability to thrive at 37 degrees C is characteristic of all human pathogens and has long been suspected to play a role in the pathogenesis of aspergillosis. As a thermotolerant fungus, Aspergillus fumigatus is capable of growth at temperatures that approach the upper limit for all eukaryotes, suggesting that the organism has evolved unique mechanisms of stress resistance that may be relevant to its ability to adapt to the stress of growth in the host. High temperature is a strain on many biological systems, particularly those involved in complex macromolecular assemblies such as ribosomes. This review will discuss the relationship between thermotolerance and virulence in pathogenic fungi, emphasizing the link to ribosome biogenesis in A. fumigatus. Future work in this area will help determine how rapid growth is accomplished at elevated temperature and may offer new avenues for the development of novel antifungals that disrupt thermotolerant ribosome assembly.


Eukaryotic Cell | 2007

Unexpected Link between Metal Ion Deficiency and Autophagy in Aspergillus fumigatus

Daryl L. Richie; Kevin K. Fuller; Jarrod R. Fortwendel; Michael D. Miley; Jason W. McCarthy; Marta Feldmesser; Judith C. Rhodes; David S. Askew

ABSTRACT Autophagy is the major cellular pathway for bulk degradation of cytosolic material and is required to maintain viability under starvation conditions. To determine the contribution of autophagy to starvation stress responses in the filamentous fungus Aspergillus fumigatus, we disrupted the A. fumigatus atg1 gene, encoding a serine/threonine kinase required for autophagy. The ΔAfatg1 mutant showed abnormal conidiophore development and reduced conidiation, but the defect could be bypassed by increasing the nitrogen content of the medium. When transferred to starvation medium, wild-type hyphae were able to undergo a limited amount of growth, resulting in radial expansion of the colony. In contrast, the ΔAfatg1 mutant was unable to grow under these conditions. However, supplementation of the medium with metal ions rescued the ability of the ΔAfatg1 mutant to grow in the absence of a carbon or nitrogen source. Depleting the medium of cations by using EDTA was sufficient to induce autophagy in wild-type A. fumigatus, even in the presence of abundant carbon and nitrogen, and the ΔAfatg1 mutant was severely growth impaired under these conditions. These findings establish a role for autophagy in the recycling of internal nitrogen sources to support conidiophore development and suggest that autophagy also contributes to the recycling of essential metal ions to sustain hyphal growth when exogenous nutrients are scarce.


Infection and Immunity | 2006

Deletion of the regulatory subunit of protein kinase A in Aspergillus fumigatus alters morphology, sensitivity to oxidative damage, and virulence

Wei Zhao; John C. Panepinto; Jarrod R. Fortwendel; Lauren Fox; Brian G. Oliver; David S. Askew; Judith C. Rhodes

ABSTRACT Aspergillus fumigatus is an important opportunistic fungal pathogen. The cAMP-dependent protein kinase (PKA) signaling pathway plays an important role in regulating morphology, growth, and virulence in a number of fungal pathogens of plants and animals. We have constructed a mutant of A. fumigatus that lacks the regulatory subunit of PKA, pkaR, and analyzed the growth and development, sensitivity to oxidative damage, and virulence of the mutant, along with those of the wild type and a complemented mutant. Both growth and germination rates of the mutant are reduced, and there are morphological abnormalities in conidiophores, leading to reduced conidiation. Conidia from the ΔpkaR mutant are more sensitive to killing by hydrogen peroxide, menadione, paraquat, and diamide. However, the hyphae of the mutant are killed to a greater extent only by paraquat and diamide, whereas they are less susceptible to the effects of hydrogen peroxide. In an immunosuppressed mouse model, intranasally administered conidia of the mutant are significantly less virulent than those of the wild type or a complemented mutant. Unregulated PKA signaling is detrimental to the virulence of A. fumigatus, perhaps through the reduced susceptibility of the mutant to damage by oxidizing agents and reduced growth kinetics.


Eukaryotic Cell | 2005

A Fungus-Specific Ras Homolog Contributes to the Hyphal Growth and Virulence of Aspergillus fumigatus

Jarrod R. Fortwendel; Wei Zhao; Ruchi Bhabhra; Steven Park; David S. Perlin; David S. Askew; Judith C. Rhodes

ABSTRACT The Ras family of GTPase proteins has been shown to control morphogenesis in many organisms, including several species of pathogenic fungi. In a previous study, we identified a gene encoding a fungus-specific Ras subfamily homolog, rasB, in Aspergillus fumigatus. Here we report that deletion of A. fumigatus rasB caused decreased germination and growth rates on solid media but had no effect on total biomass accumulation after 24 h of growth in liquid culture. The ΔrasB mutant had an irregular hyphal morphology characterized by increased branching. Expression of rasBΔ113-135, a mutant transgene lacking the conserved rasB internal amino acid insertion, did not complement the deletion phenotype of delayed growth and germination rates and abnormal hyphal morphology. Virulence of the rasB deletion strain was diminished; mice infected with this strain exhibited ∼65% survival compared to ∼10% with wild-type and reconstituted strains. These data support the hypothesis that rasB homologs, which are highly conserved among fungi that undergo hyphal growth, control signaling modules important to the directional growth of fungal hyphae.


Molecular Microbiology | 2007

The Aspergillus fumigatus metacaspases CasA and CasB facilitate growth under conditions of endoplasmic reticulum stress

Daryl L. Richie; Michael D. Miley; Ruchi Bhabhra; Geoffrey D. Robson; Judith C. Rhodes; David S. Askew

We have examined the contribution of metacaspases to the growth and stress response of the opportunistic human mould pathogen, Aspergillus fumigatus, based on increasing evidence implicating the yeast metacaspase Yca1p in apoptotic‐like programmed cell death. Single metacaspase‐deficient mutants were constructed by targeted disruption of each of the two metacaspase genes in A. fumigatus, casA and casB, and a metacaspase‐deficient mutant, ΔcasA/ΔcasB, was constructed by disrupting both genes. Stationary phase cultures of wild‐type A.  fumigatus were associated with the appearance of typical markers of apoptosis, including elevated proteolytic activity against caspase substrates, phosphatidylserine exposure on the outer leaflet of the membrane, and loss of viability. By contrast, phosphatidylserine exposure was not observed in stationary phase cultures of the ΔcasA/ΔcasB mutant, although caspase activity and viability was indistinguishable from wild type. The mutant retained wild‐type virulence and showed no difference in sensitivity to a range of pro‐apoptotic stimuli that have been reported to initiate yeast apoptosis. However, the ΔcasA/ΔcasB mutant showed a growth detriment in the presence of agents that disrupt endoplasmic reticulum homeostasis. These findings demonstrate that metacaspase activity in A. fumigatus contributes to the apoptotic‐like loss of membrane phospholipid asymmetry at stationary phase, and suggest that CasA and CasB have functions that support growth under conditions of endoplasmic reticulum stress.

Collaboration


Dive into the David S. Askew's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daryl L. Richie

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Karthik Krishnan

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

Ruchi Bhabhra

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

John C. Panepinto

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Xizhi Feng

University of Cincinnati Academic Health Center

View shared research outputs
Top Co-Authors

Avatar

James N. Ihle

St. Jude Children's Research Hospital

View shared research outputs
Top Co-Authors

Avatar

John L. Cleveland

Scripps Research Institute

View shared research outputs
Top Co-Authors

Avatar

Kevin K. Fuller

University of Cincinnati Academic Health Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge