Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amit S. Kalgutkar is active.

Publication


Featured researches published by Amit S. Kalgutkar.


Journal of Biological Chemistry | 1999

Arachidonic Acid Oxygenation by COX-1 and COX-2 MECHANISMS OF CATALYSIS AND INHIBITION

Lawrence J. Marnett; Scott W. Rowlinson; Douglas C. Goodwin; Amit S. Kalgutkar; Cheryl A. Lanzo

Prostaglandins were discovered in human semen in 1930, but their low concentrations and instability precluded identification for nearly 30 years (for a brief historical review, see Ref. 1). Once they were identified, it was clear they arose from polyunsaturated fatty acids by a complex series of reactions involving oxygenation, cyclization, and the generation of five chiral centers from an achiral substrate. The mechanism of prostaglandin biosynthesis was outlined in 1967 by Hamberg and Samuelsson (2), and the basic tenets have been confirmed in subsequent studies. The key step in their proposed mechanism was the formation of bicyclic peroxides (endoperoxides) as the initial products of polyunsaturated fatty acid oxygenation (Fig. 1). The term cyclooxygenase (COX) 2 was coined to describe the enzyme that carried out this complex chemical transformation, and its role was confirmed by the isolation of prostaglandin endoperoxides in 1973 (3, 4). In addition to catalyzing a fascinating metabolic transformation, COX is an enormously important pharmacological target. Vane reported in 1971 (5) that non-steroidal anti-inflammatory drugs (NSAIDs) inhibit prostaglandin formation and demonstrated that their relative inhibitory potency in vitro correlates to their antiinflammatory activity in vivo. This not only explained the beneficial activity of NSAIDs but also their side effects such as gastrointestinal toxicity and bleeding because prostaglandins and related molecules (i.e. thromboxane) are involved in a very broad range of physiological and pathophysiological responses. The importance of these molecules as autocrine and paracrine mediators has been confirmed recently by the phenotypes of mice bearing targeted deletions in COX genes or prostaglandin receptor genes. The discovery of a second gene (COX-2) coding for cyclooxygenase and the demonstration that its protein product is distributed differently from the originally discovered enzyme (COX-1) raised the possibility that some of the beneficial effects of NSAIDs may be separable from their side effects by development of isoform-selective inhibitors (6–9). This hypothesis has been dramatically validated by the demonstration that selective COX-2 inhibitors are anti-inflammatory and analgesic but lack the gastric toxicity associated with all currently available NSAIDs (10, 11).


Current Drug Metabolism | 2007

Mechanism-based inactivation of cytochrome P450 enzymes : Chemical mechanisms, structure-activity relationships and relationship to clinical drug-drug interactions and idiosyncratic adverse drug reactions

Amit S. Kalgutkar; R. Scott Obach; Tristan S. Maurer

Cytochrome P450 constitute a superfamily of heme-containing enzymes that catalyze the oxidative biotransformation of structurally diverse xenobiotics including drugs. Inhibition of P450 enzymes is by far the most common mechanism which can lead to DDIs. P450 inhibition can be categorized as reversible (competitive or non-competitive) or irreversible (mechanism-based inactivation). Mechanism-based P450 inactivation usually involves bioactivation of the xenobiotic to a reactive intermediate, which covalently modifies an active site amino acid residue and/or coordinates to the heme prosthetic group. Covalent modification of P450 enzymes can also lead to hapten formation and can in some cases trigger an autoimmune response resulting in toxicological consequences. Compared to reversible inhibition, irreversible inhibition more frequently results in unfavorable DDIs as the inactivated P450 enzyme has to be replaced by newly synthesized protein. For these reasons, most drug metabolism groups within pharmaceutical companies have well-established screening paradigms to assess mechanism-based inactivation of major human P450 enzymes by new chemical entities followed by in-depth mechanistic studies to elucidate the mechanism of P450 inactivation when a positive finding is discerned. A deeper understanding of the process leading to enzyme inactivation by drug candidates can lead to rational chemical intervention strategies to circumvent the P450 inactivation/bioactivation liability. Apart from structure-activity relationship studies, methodology to predict the magnitude of in vivo metabolic DDIs using in vitro P450 inactivation data and predicted human pharmacokinetics of the candidate drug also exists and can be utilized to project the extent of clinical DDIs against P450 enzyme-specific substrates. In this review, a comprehensive analysis of the biochemical basis and known structure-activity relationships for P450 inactivation by xenobiotics is described. In addition, the current state-of-the-art of the methodology used in predicting the magnitude of DDIs using in vitro P450 inactivation data and human pharmacokinetic parameters is discussed in detail.


Nature Chemical Biology | 2011

On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds

Tina R White; Chad M Renzelman; Arthur C Rand; Taha Rezai; Cayla M. McEwen; Vladimir Gelev; Rushia Turner; Roger G. Linington; Siegfried S. F. Leung; Amit S. Kalgutkar; Jonathan N. Bauman; Yizhong Zhang; Spiros Liras; David A. Price; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Trends in Pharmacological Sciences | 1999

Cyclooxygenase 2 inhibitors: discovery, selectivity and the future.

Lawrence J. Marnett; Amit S. Kalgutkar

The recent marketing of two selective cyclooxygenase 2 (COX-2) inhibitors climaxes the first phase of an exciting and fast-paced effort to exploit a novel molecular target for nonsteroidal anti-inflammatory drugs (NSAIDs). Much has been written in the lay and scientific press about the potential of COX-2 inhibitors as anti-inflammatory and analgesic agents that lack the gastrointestinal side-effects of traditional NSAIDs. Although research on COX-2 inhibitors has focussed mainly on inflammation and pain, experimental and epidemiological data suggest that COX-2 inhibitors could be used in the treatment or prevention of a broader range of diseases. In this review, some key points and unresolved issues related to the discovery of COX-2 inhibitors, the kinetic and structural basis for their selectivity, and possible complications in their development and use will be discussed.


Chemical Research in Toxicology | 2008

Can in vitro metabolism-dependent covalent binding data in liver microsomes distinguish hepatotoxic from nonhepatotoxic drugs? An analysis of 18 drugs with consideration of intrinsic clearance and daily dose.

R. Scott Obach; Amit S. Kalgutkar; John R. Soglia; Sabrina X. Zhao

In vitro covalent binding assessments of drugs have been useful in providing retrospective insights into the association between drug metabolism and a resulting toxicological response. On the basis of these studies, it has been advocated that in vitro covalent binding to liver microsomal proteins in the presence and the absence of NADPH be used routinely to screen drug candidates. However, the utility of this approach in predicting toxicities of drug candidates accurately remains an unanswered question. Importantly, the years of research that have been invested in understanding metabolic bioactivation and covalent binding and its potential role in toxicity have focused only on those compounds that demonstrate toxicity. Investigations have not frequently queried whether in vitro covalent binding could be observed with drugs with good safety records. Eighteen drugs (nine hepatotoxins and nine nonhepatotoxins in humans) were assessed for in vitro covalent binding in NADPH-supplemented human liver microsomes. Of the two sets of nine drugs, seven in each set were shown to undergo some degree of covalent binding. Among hepatotoxic drugs, acetaminophen, carbamazepine, diclofenac, indomethacin, nefazodone, sudoxicam, and tienilic acid demonstrated covalent binding, while benoxaprofen and felbamate did not. Of the nonhepatotoxic drugs evaluated, buspirone, diphenhydramine, meloxicam, paroxetine, propranolol, raloxifene, and simvastatin demonstrated covalent binding, while ibuprofen and theophylline did not. A quantitative comparison of covalent binding in vitro intrinsic clearance did not separate the two groups of compounds, and in fact, paroxetine, a nonhepatotoxin, showed the greatest amount of covalent binding in microsomes. Including factors such as the fraction of total metabolism comprised by covalent binding and the total daily dose of each drug improved the discrimination between hepatotoxic and nontoxic drugs based on in vitro covalent binding data; however, the approach still would falsely identify some agents as potentially hepatotoxic.


Expert Opinion on Drug Metabolism & Toxicology | 2005

Minimising the potential for metabolic activation in drug discovery.

Amit S. Kalgutkar; John R. Soglia

Investigations into the role of bioactivation in the pathogenesis of xenobiotic-induced toxicity have been a major area of research since the link between reactive metabolites and carcinogenesis was first reported in the 1930s. Circumstantial evidence suggests that bioactivation of relatively inert functional groups to reactive metabolites may contribute towards certain drug-induced adverse reactions. Reactive metabolites, if not detoxified, can covalently modify essential cellular targets. The identity of the susceptible biomacromolecule(s), and the physiological consequence of its covalent modification, will dictate the resulting toxicological response (e.g., covalent modification of DNA by reactive intermediates derived from procarcinogens that potentially leads to carcinogenesis). The formation of drug–protein adducts often carries a potential risk of clinical toxicities that may not be predicted from preclinical safety studies. Animal models used to reliably predict idiosyncratic drug toxicity are unavailable at present. Furthermore, considering that the frequency of occurrence of idiosyncratic adverse drug reactions (IADRs) is fairly rare (1 in 1000 to 1 in 10,000), it is impossible to detect such phenomena in early clinical trials. Thus, the occurrence of IADRs during late clinical trials or after a drug has been released can lead to an unanticipated restriction in its use and even in its withdrawal. Major themes explored in this review include a comprehensive cataloguing of bioactivation pathways of functional groups commonly utilised in drug design efforts with appropriate strategies towards detection of corresponding reactive intermediates. Several instances wherein replacement of putative structural alerts in drugs associated with IADRs with a latent functionality eliminates the underlying liability are also presented. Examples of where bioactivation phenomenon in drug candidates can be successfully abrogated via iterative chemical interventions are also discussed. Finally, appropriate strategies that aid in potentially mitigating the risk of IADRs are explored, especially in circumstances in which the structural alert is also responsible for the primary pharmacology of the drug candidate and cannot be replaced.


Chemical Research in Toxicology | 2009

Can In Vitro Metabolism-Dependent Covalent Binding Data Distinguish Hepatotoxic from Nonhepatotoxic Drugs? An Analysis Using Human Hepatocytes and Liver S-9 Fraction

Jonathon N. Bauman; Joan M. Kelly; Sakambari Tripathy; Sabrina X. Zhao; Wing Lam; Amit S. Kalgutkar; R. Scott Obach

In vitro covalent binding studies in which xenobiotics are shown to undergo metabolism-dependent covalent binding to macromolecules have been commonly used to shed light on the biochemical mechanisms of xenobiotic-induced toxicity. In this paper, 18 drugs (nine hepatotoxins and nine nonhepatotoxins) were tested for their proclivity to demonstrate metabolism-dependent covalent binding to macromolecules in human liver S-9 fraction (9000 g supernatant) or human hepatocytes, as an extension to previous work that used human liver microsomes published in this journal [ Obach et al. ( 2008 ) Chem. Res. Toxicol. 21 , 1814 -1822 ]. In the S-9 fraction, seven out of the nine drugs in each category demonstrated some level of metabolism-dependent covalent binding. Inclusion of reduced glutathione, cofactors needed by conjugating enzymes, and other parameters (total daily dose and fraction of total intrinsic clearance comprised by covalent binding) improved the ability of the system to separate hepatotoxins from nonhepatotoxins to a limited extent. Covalent binding in human hepatocytes showed that six out of the nine hepatotoxins and four out of eight nonhepatotoxins demonstrated covalent binding. Taking into account estimates of total daily body burden of covalent binding from the hepatocyte data showed an improvement over other in vitro systems for distinguishing hepatotoxins from nonhepatotoxins; however, this metabolism system still displayed some false positives. Combined with the previous study using liver microsomes, these findings identify the limitations of in vitro covalent binding data for prospective prediction of hepatotoxicity for new drug candidates and highlight the need for a better understanding of the link between drug bioactivation, covalent adduct formation, and toxicity outcomes. Directly relating covalent binding to hepatotoxicity is likely an oversimplification of the process whereby adduct formation ultimately leads to toxicity. Understanding underlying complexities (e.g., which macromolecules are important covalent binding targets, interindividual differences in susceptibility, etc.) will be essential to any understanding of the problem of metabolism-dependent hepatotoxicity and predicting toxicity from in vitro experiments.


Journal of Medicinal Chemistry | 2012

Mechanism-Based Inactivation (MBI) of Cytochrome P450 Enzymes: Structure–Activity Relationships and Discovery Strategies To Mitigate Drug–Drug Interaction Risks

Suvi T. M. Orr; Sharon L. Ripp; T. Eric Ballard; Jaclyn L. Henderson; Dennis O. Scott; R. Scott Obach; Hao Sun; Amit S. Kalgutkar

Structure−Activity Relationships and Discovery Strategies To Mitigate Drug−Drug Interaction Risks Suvi T. M. Orr,† Sharon L. Ripp,‡ T. Eric Ballard,† Jaclyn L. Henderson,† Dennis O. Scott, R. Scott Obach,‡ Hao Sun,‡ and Amit S. Kalgutkar* †Worldwide Medicinal Chemistry and ‡Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, Eastern Point Road, Groton, Connecticut 06340, United States Pharmacokinetics, Dynamics and Metabolism, Pfizer Global Research and Development, 620 Memorial Drive, Cambridge, Massachusetts 02139, United States


Current Opinion in Chemical Biology | 1998

Design of selective inhibitors of cyclooxygenase-2 as nonulcerogenic anti-inflammatory agents

Lawrence J. Marnett; Amit S. Kalgutkar

The discovery of a second isoform of cyclooxygenase (cyclooxygenase-2) that is expressed in inflammatory cells and the central nervous system, but not in the gastric mucosa, offers the possibility of developing anti-inflammatory and analgesic agents that lack the gastrointestinal side effects of currently available nonsteroidal anti-inflammatory drugs. Lead compounds from several different structural classes have been identified and shown to be slow, tight-binding inhibitors that express their selectivity for cyclooxygenase-2 in the time-dependent step. The determination of structures of enzyme-inhibitor co-crystals along with site-directed mutagenesis experiments reveal the molecular basis for selectivity of some, but not all, inhibitors. Preclinical and clinical studies suggest cyclooxygenase-2 inhibitors are highly promising new agents for the treatment of pain and inflammation, and for the prevention of cancer.


Expert Opinion on Drug Discovery | 2012

Drug discovery for a new generation of covalent drugs

Amit S. Kalgutkar; Deepak Dalvie

Introduction: The design of target-specific covalent inhibitors is conceptually attractive because of increased biochemical efficiency through covalency and increased duration of action that outlasts the pharmacokinetics of the agent. Although many covalent inhibitors have been approved or are in advanced clinical trials to treat indications such as cancer and hepatitis C, there is a general tendency to avoid them as drug candidates because of concerns regarding immune-mediated toxicity that can arise from indiscriminate reactivity with off-target proteins. Areas covered: The review examines potential reason(s) for the excellent safety record of marketed covalent agents and advanced clinical candidates for emerging therapeutic targets. A significant emphasis is placed on proteomic techniques and chemical/biochemical reactivity assays that aim to provide a systematic rank ordering of pharmacologic selectivity relative to off-target protein reactivity of covalent inhibitors. Expert opinion: While tactics to examine selective covalent modification of the pharmacologic target are broadly applicable in drug discovery, it is unclear whether the output from such studies can prospectively predict idiosyncratic immune-mediated drug toxicity. Opinions regarding an acceptable threshold of protein reactivity/body burden for a toxic electrophile and a non-toxic electrophilic covalent drug have not been defined. Increasing confidence in proteomic and chemical/biochemical reactivity screens will require a retrospective side-by-side profiling of marketed covalent drugs and electrophiles known to cause deleterious toxic effects via non-selective covalent binding.

Collaboration


Dive into the Amit S. Kalgutkar's collaboration.

Researchain Logo
Decentralizing Knowledge