Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Jonathan N. Bauman is active.

Publication


Featured researches published by Jonathan N. Bauman.


Nature Chemical Biology | 2011

On-resin N-methylation of cyclic peptides for discovery of orally bioavailable scaffolds

Tina R White; Chad M Renzelman; Arthur C Rand; Taha Rezai; Cayla M. McEwen; Vladimir Gelev; Rushia Turner; Roger G. Linington; Siegfried S. F. Leung; Amit S. Kalgutkar; Jonathan N. Bauman; Yizhong Zhang; Spiros Liras; David A. Price; Alan M. Mathiowetz; Matthew P. Jacobson; R. Scott Lokey

Backbone N-methylation is common among peptide natural products and has a significant impact on both the physical properties and the conformational states of cyclic peptides. However, the specific impact of N-methylation on passive membrane diffusion in cyclic peptides has not been investigated systematically. Here we report a method for the selective, on-resin N-methylation of cyclic peptides to generate compounds with drug-like membrane permeability and oral bioavailability. The selectivity and degree of N-methylation of the cyclic peptide was determined by backbone stereochemistry, suggesting that conformation dictates the regiochemistry of the N-methylation reaction. The permeabilities of the N-methyl variants were corroborated by computational studies on a 1024-member virtual library of N-methyl cyclic peptides. One of the most permeable compounds, a cyclic hexapeptide (MW = 755) with three N-methyl groups, showed an oral bioavailability of 28% in rat.


Drug Metabolism and Disposition | 2012

Optimized Assays for Human UDP-Glucuronosyltransferase (UGT) Activities: Altered Alamethicin Concentration and Utility to Screen for UGT Inhibitors

Robert L. Walsky; Jonathan N. Bauman; Bourcier K; Giddens G; Lapham K; Negahban A; Ryder Tf; Obach Rs; Ruth Hyland; Theunis C. Goosen

The measurement of the effect of new chemical entities on human UDP-glucuronosyltransferase (UGT) marker activities using in vitro experimentation represents an important experimental approach in drug development to guide clinical drug-interaction study designs or support claims that no in vivo interaction will occur. Selective high-performance liquid chromatography-tandem mass spectrometry functional assays of authentic glucuronides for five major hepatic UGT probe substrates were developed: β-estradiol-3-glucuronide (UGT1A1), trifluoperazine-N-glucuronide (UGT1A4), 5-hydroxytryptophol-O-glucuronide (UGT1A6), propofol-O-glucuronide (UGT1A9), and zidovudine-5′-glucuronide (UGT2B7). High analytical sensitivity permitted characterization of enzyme kinetic parameters at low human liver microsomal and recombinant UGT protein concentration (0.025 mg/ml), which led to a new recommended optimal universal alamethicin activation concentration of 10 μg/ml for microsomes. Alamethicin was not required for recombinant UGT incubations. Apparent enzyme kinetic parameters, particularly for UGT1A1 and UGT1A4, were affected by nonspecific binding. Unbound intrinsic clearance for UGT1A9 and UGT2B7 increased significantly after addition of 2% bovine serum albumin, with minimal changes for UGT1A1, UGT1A4, and UGT1A6. Eleven potential UGT and cytochrome P450 inhibitors were evaluated as UGT inhibitors, resulting in observation of nonselective UGT inhibition by chrysin, mefenamic acid, silibinin, tangeretin, ketoconazole, itraconazole, ritonavir, and verapamil. The pan-cytochrome P450 inhibitor, 1-aminobenzotriazole, minimally inhibited UGT activities and may be useful in reaction phenotyping of mixed UGT and cytochrome P450 substrates. These methods should prove useful in the routine assessments of the potential for new drug candidates to elicit pharmacokinetic drug interactions via inhibition of human UGT activities and the identification of UGT enzyme-selective chemical inhibitors.


Current Drug Metabolism | 2003

Reaction Phenotyping in Drug Discovery: Moving Forward with Confidence?

J. Andrew Williams; Susan Hurst; Jonathan N. Bauman; Barry C. Jones; Ruth Hyland; John P. Gibbs; R. Scott Obach; Simon E. Ball

For the pharmaceutical industry, one of the challenges in evaluating the risk of future compound attrition at the discovery stage is the successful prediction of the major routes of clearance in humans. For compounds cleared by metabolism, such information will help to avoid the development of compounds that will exhibit large interpatient differences in pharmacokinetics via 1). routes of metabolism catalyzed by functionally polymorphic enzymes and/or 2). clinically significant metabolic drug-drug interactions, in the later stages of development. The degree of intersubject variability that is acceptable for a drug candidate is uncertain in the discovery stage where knowledge of other important factors is limited or unavailable (i.e. therapeutic index, pharmacodynamic variability, etc). Reaction phenotyping is the semi-quantitative in vitro estimation of the relative contributions of specific drug-metabolizing enzymes to the metabolism of a test compound. However, reaction phenotyping in the discovery stage of drug development is complicated by the absence of radiolabelled parent compound or metabolite bioanalytical standards relative to later stages of development. In this commentary, some of the approaches, based on published data, which can be taken to overcome these challenges are discussed. In addition, knowledge of the molecular structure (i.e. specific chemical substituents), physicochemical properties, and routes of clearance in animals can all help in making a successful prediction for the routes of clearance in humans. In combination, the objective of these studies should be to reduce to a minimum the risk of finding significant inter-patient differences in pharmacokinetics at a later stage in development due to significant metabolism by polymorphic enzymes or drug-drug interactions. Consequently, this data should be used to avoid costly late stage attrition.


Bioorganic & Medicinal Chemistry Letters | 2008

Trifluoromethylpyrimidine-based inhibitors of proline-rich tyrosine kinase 2 (PYK2): structure-activity relationships and strategies for the elimination of reactive metabolite formation.

Daniel P. Walker; F. Christopher Bi; Amit S. Kalgutkar; Jonathan N. Bauman; Sabrina X. Zhao; John R. Soglia; Gary E. Aspnes; Daniel W. Kung; Jacquelyn Klug-McLeod; Michael P. Zawistoski; Molly A. McGlynn; Robert M. Oliver; Matthew Francis Dunn; Jian-Cheng Li; Daniel T. Richter; Beth Cooper; John Charles Kath; Catherine A. Hulford; Christopher Autry; Michael Joseph Luzzio; Ethan Ung; W. Gregory Roberts; Peter C. Bonnette; Leonard Buckbinder; Anil Mistry; Matthew C. Griffor; Seungil Han; Angel Guzman-Perez

The synthesis and SAR for a series of diaminopyrimidines as PYK2 inhibitors are described. Using a combination of library and traditional medicinal chemistry techniques, a FAK-selective chemical series was transformed into compounds possessing good PYK2 potency and 10- to 20-fold selectivity against FAK. Subsequent studies found that the majority of the compounds were positive in a reactive metabolite assay, an indicator for potential toxicological liabilities. Based on the proposed mechanism for bioactivation, as well as a combination of structure-based drug design and traditional medicinal chemistry techniques, a follow-up series of PYK2 inhibitors was identified that maintained PYK2 potency, FAK selectivity and HLM stability, yet were negative in the RM assay.


Drug Metabolism and Disposition | 2008

Comparison of the Bioactivation Potential of the Antidepressant and Hepatotoxin Nefazodone with Aripiprazole, a Structural Analog and Marketed Drug

Jonathan N. Bauman; Kosea S. Frederick; Aarti Sawant; Robert L. Walsky; Loretta M. Cox; Obach Rs; Amit S. Kalgutkar

In vitro metabolism/bioactivation of structurally related central nervous system agents nefazodone (hepatotoxin) and aripiprazole (nonhepatotoxin) were undertaken in human liver microsomes in an attempt to understand the differences in toxicological profile. NADPH-supplemented microsomal incubations of nefazodone and glutathione generated conjugates derived from addition of thiol to quinonoid intermediates. Inclusion of cyanide afforded cyano conjugates to iminium ions derived from α-carbon oxidation of the piperazine ring in nefazodone and downstream metabolites. Although the arylpiperazine motif in aripiprazole did not succumb to bioactivation, the dihydroquinolinone group was bioactivated via an intermediate monohydroxy metabolite to a reactive species, which was trapped by glutathione. Studies with synthetic dehydroaripiprazole metabolite revealed an analogous glutathione conjugate with molecular weight 2 Da lower. Based on the proposed structure of the glutathione conjugate(s), a bioactivation sequence involving aromatic ortho-or para-hydroxylation on the quinolinone followed by oxidation to a quinone-imine was proposed. P4503A4 inactivation studies in microsomes indicated that, unlike nefazodone, aripiprazole was not a time- and concentration-dependent inactivator of the enzyme. Overall, these studies reinforce the notion that not all drugs that are bioactivated in vitro elicit a toxicological response in vivo. A likely explanation for the markedly improved safety profile of aripiprazole (versus nefazodone) despite the accompanying bioactivation liability is the vastly improved pharmacokinetics (enhanced oral bioavailability, longer elimination half-life) due to reduced P4503A4-mediated metabolism/bioactivation, which result in a lower daily dose (5–20 mg/day) compared with nefazodone (200–400 mg/day). This attribute probably reduces the total body burden to reactive metabolite exposure and may not exceed a threshold needed for toxicity.


Drug Metabolism and Disposition | 2012

Immune-mediated agranulocytosis caused by the cocaine adulterant levamisole: a case for reactive metabolite(s) involvement.

Angela Wolford; Thomas S. McDonald; Heather Eng; Steven Hansel; Yue Chen; Jonathan N. Bauman; Raman Sharma; Amit S. Kalgutkar

The United States Public Health Service Administration is alerting medical professionals that a substantial percentage of cocaine imported into the United States is adulterated with levamisole, a veterinary pharmaceutical that can cause blood cell disorders such as severe neutropenia and agranulocytosis. Levamisole was previously approved in combination with fluorouracil for the treatment of colon cancer; however, the drug was withdrawn from the U.S. market in 2000 because of the frequent occurrence of agranulocytosis. The detection of autoantibodies such as antithrombin (lupus anticoagulant) and an increased risk of agranulocytosis in patients carrying the human leukocyte antigen B27 genotype suggest that toxicity is immune-mediated. In this perspective, we provide an historical account of the levamisole/cocaine story as it first surfaced in 2008, including a succinct review of levamisole pharmacology, pharmacokinetics, and preclinical/clinical evidence for levamisole-induced agranulocytosis. Based on the available information on levamisole metabolism in humans, we propose that reactive metabolite formation is the rate-limiting step in the etiology of agranulocytosis associated with levamisole, in a manner similar to other drugs (e.g., propylthiouracil, methimazole, captopril, etc.) associated with blood dyscrasias. Finally, considering the toxicity associated with levamisole, we propose that the 2,3,5,6-tetrahydroimidazo[2,1-b]thiazole scaffold found in levamisole be categorized as a new structural alert, which is to be avoided in drug design.


Bioorganic & Medicinal Chemistry Letters | 2009

The discovery of novel calcium sensing receptor negative allosteric modulators.

Gayatri Balan; Jonathan N. Bauman; Shoml Bhattacharya; Castrodad M; David R. Healy; Michael Herr; Peter Humphries; Jennings S; Amit S. Kalgutkar; Brendon Kapinos; Khot; Lazarra K; Madeleine H. Li; Y Li; Constantin Neagu; Robert M. Oliver; David W. Piotrowski; David A. Price; Hong Qi; Simmons Ha; James A. Southers; Liuqing Wei; Yingxin Zhang; Vishwas M. Paralkar

The design and profile of a series of zwitterionic calcium sensing receptor negative allosteric modulators is described. Evaluation of key analogues using a rat model demonstrate a robust response, significantly improved potency over ronacaleret and have the potential as an oral, anabolic treatment for osteoporosis.


Drug Metabolism and Disposition | 2014

Biosynthesis of Drug Metabolites and Quantitation Using NMR Spectroscopy for Use in Pharmacologic and Drug Metabolism Studies

Gregory S. Walker; Jonathan N. Bauman; Tim Ryder; Evan B. Smith; Douglas K. Spracklin; Obach Rs

The contribution of drug metabolites to the pharmacologic and toxicologic activity of a drug can be important; however, for a variety of reasons metabolites can frequently be difficult to synthesize. To meet the need of having samples of drug metabolites for further study, we have developed biosynthetic methods coupled with quantitative NMR spectroscopy (qNMR) to generate solutions of metabolites of known structure and concentration. These quantitative samples can be used in a variety of ways when a synthetic sample is unavailable, including pharmacologic assays, standards for in vitro work to help establish clearance pathways, and/or as analytical standards for bioanalytical work to ascertain exposure, among others. We illustrate five examples of metabolite biosynthesis and qNMR. The types of metabolites include one glucuronide and four oxidative products. Concentrations of the isolated metabolite stock solutions ranged from 0.048 to 8.3 mM, with volumes from approximately 0.04 to 0.150 ml in hexadeutarated dimethylsulfoxide. These specific quantified isolates were used as standards in the drug discovery setting as substrates in pharmacology assays, for bioanalytical assays to establish exposure, and in variety of routine absorption, distribution, metabolism, and excretion assays, such as protein binding and determining blood-to-plasma ratios. The methods used to generate these materials are described in detail with the objective that these methods can be generally used for metabolite biosynthesis and isolation.


Expert Review of Clinical Pharmacology | 2008

Toxicophores, reactive metabolites and drug safety: when is it a cause for concern?

Amit S. Kalgutkar; Gwendolyn Fate; Mary Theresa Didiuk; Jonathan N. Bauman

It is generally accepted that bioactivation of relatively inert functional groups (toxicophores) to reactive metabolites is an obligatory step in the pathogenesis of certain idiosyncratic adverse drug reactions (IADRs). IADRs cannot be detected in regulatory animal toxicity studies and, given their low frequency of occurrence in humans (1 in 10,000 to 1 in 100,000), they are often not detected until the drug has gained broad exposure in a large patient population. The detection of IADRs during late clinical trials or after a drug has been released can lead to an unanticipated restriction in its use, and even in its withdrawal. To date, there is neither a consistent nor a well-defined link between bioactivation and IADRs; however, the potential does exist for these processes to be causally related. Thus, the formation of reactive metabolites with a drug candidate is generally considered a liability in most pharmaceutical companies. Procedures have been implemented to evaluate bioactivation potential of new drug candidates with the goal of eliminating or minimizing reactive metabolite formation by rational structural modification of the lead chemical class. While such studies have proven extremely useful in the retrospective analysis of bioactivation pathways of toxic drugs and defining toxicophores, their ability to accurately predict the IADR potential of new drug candidates has been challenged, given that several commercially successful drugs form reactive metabolites, yet, they are not associated with a significant incidence of IADRs. In this article, we review the basic methodology that is currently utilized to evaluate the bioactivation potential of new compounds, with particular emphasis on the advantages and limitation of these assays. Plausible reasons for the excellent safety record of certain drugs susceptible to bioactivation are also explored. Overall, these observations provide valuable guidance in the proper use of bioactivation assessments when selecting drug candidates for development.


Drug Metabolism and Disposition | 2009

Utility of MetaSite in improving metabolic stability of the neutral indomethacin amide derivative and selective cyclooxygenase-2 inhibitor 2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)-N-phenethyl-acetamide.

David Boyer; Jonathan N. Bauman; Daniel P. Walker; Brendon Kapinos; Kapil Karki; Amit S. Kalgutkar

Prediction of the metabolic sites for new compounds, synthesized or virtual, is important in the rational design of compounds with increased resistance to metabolism. The aim of the present investigation was to use rational design together with MetaSite, an in silico tool for predicting metabolic soft spots, to synthesize compounds that retain their pharmacological effects but are metabolically more stable in the presence of cytochrome P450 (P450) enzymes. The model compound for these studies was the phenethyl amide (1) derivative of the nonsteroidal anti-inflammatory drug (NSAID) indomethacin. Unlike the parent NSAID, 1 is a potent and selective cyclooxygenase-2 (COX-2) inhibitor and nonulcerogenic anti-inflammatory agent in the rat. This pharmacological benefit is offset by the finding that 1 is very unstable in rat and human microsomes because of extensive P4503 A4/2D6-mediated metabolism on the phenethyl group, experimental observations that were accurately predicted by MetaSite. The information was used to design analogs with polar (glycinyl) and/or electron-deficient (fluorophenyl, fluoropyridinyl) amide substituents to reduce metabolism in 1. MetaSite correctly predicted the metabolic shift from oxidation on the amide substituent to O-demethylation for these compounds, whereas rat and human microsomal stability studies and pharmacokinetic assessments in the rat confirmed that the design tactics for improving pharmacokinetic attributes of 1 had worked in our favor. In addition, the fluorophenyl and pyridinyl amide derivatives retained the potent and selective COX-2 inhibition demonstrated with 1. Overall, the predictions from MetaSite gave useful information leading to the design of new compounds with improved metabolic properties.

Collaboration


Dive into the Jonathan N. Bauman's collaboration.

Researchain Logo
Decentralizing Knowledge