Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amnon Levi is active.

Publication


Featured researches published by Amnon Levi.


Nature Genetics | 2013

The draft genome of watermelon (Citrullus lanatus) and resequencing of 20 diverse accessions

Shaogui Guo; Jianguo Zhang; Honghe Sun; Jérôme Salse; William J. Lucas; Haiying Zhang; Yi Zheng; Linyong Mao; Yi Ren; Zhiwen Wang; Jiumeng Min; Xiaosen Guo; Florent Murat; Byung-Kook Ham; Zhaoliang Zhang; Shan Gao; Mingyun Huang; Yimin Xu; Silin Zhong; Aureliano Bombarely; Lukas A. Mueller; Hong Zhao; Hongju He; Zhang Y; Zhonghua Zhang; Sanwen Huang; Tao Tan; Erli Pang; Kui Lin; Qun Hu

Watermelon, Citrullus lanatus, is an important cucurbit crop grown throughout the world. Here we report a high-quality draft genome sequence of the east Asia watermelon cultivar 97103 (2n = 2× = 22) containing 23,440 predicted protein-coding genes. Comparative genomics analysis provided an evolutionary scenario for the origin of the 11 watermelon chromosomes derived from a 7-chromosome paleohexaploid eudicot ancestor. Resequencing of 20 watermelon accessions representing three different C. lanatus subspecies produced numerous haplotypes and identified the extent of genetic diversity and population structure of watermelon germplasm. Genomic regions that were preferentially selected during domestication were identified. Many disease-resistance genes were also found to be lost during domestication. In addition, integrative genomic and transcriptomic analyses yielded important insights into aspects of phloem-based vascular signaling in common between watermelon and cucumber and identified genes crucial to valuable fruit-quality traits, including sugar accumulation and citrulline metabolism.


Genetic Resources and Crop Evolution | 2001

Genetic diversity among watermelon (Citrullus lanatus and Citrullus colocynthis) accessions

Amnon Levi; Claude E. Thomas; Anthony P. Keinath; Todd C. Wehner

Genetic diversity was estimated among 42 U.S. PlantIntroduction (PI) accessions of the genusCitrullus (of these, 34 PIs are reported tohave disease resistance), and 5 watermelon cultivars, using 30RAPD primers. These primers produced 662 RAPD markers that could berated with high confidence. Based on these markers, geneticsimilarity coefficients were calculated and a dendrogram wasconstructed using the unweighted pair-group method witharithmetic average (UPGMA). The analysis delineated threemajor clusters. The first cluster consisted of a group of fivewatermelon cultivars, a group of C.lanatus var. lanatusaccessions, and a group of C.lanatus var. lanatusaccessions that contained some C.lanatus var. citroidesgenes. The second cluster consisted of the C.lanatus var. citroidesaccessions, while the third cluster consisted of theC. colocynthis accessions.The two C. lanatus clustersdifferentiated from each other and from the C.colocynthis cluster at the level of 58.8%and 38.9% genetic similarity, respectively. Assessment ofgenetic diversity among accessions that have been reported to havedisease resistance indicated that resistance to either anthracnose,downy mildew, powdery mildew, or watermelon mosaic virus is foundamong all major groups of Citrullus PIs.Additionally, resistance to gummy stem blight or Fusarium wilt mayexist among C. lanatus var.citroides PIs. This study demonstrates thatmolecular markers can be useful in assessing genetic diversity, andin sorting Citrullus PIs into phylogeneticgroups prior to their evaluation for disease or pestresistance.


PLOS ONE | 2012

A High Resolution Genetic Map Anchoring Scaffolds of the Sequenced Watermelon Genome

Yi Ren; Hong Zhao; Qinghe Kou; Jiao Jiang; Shaogui Guo; Haiying Zhang; Wenju Hou; Xiaohua Zou; Honghe Sun; Guoyi Gong; Amnon Levi; Yong Xu

As part of our ongoing efforts to sequence and map the watermelon (Citrullus spp.) genome, we have constructed a high density genetic linkage map. The map positioned 234 watermelon genome sequence scaffolds (an average size of 1.41 Mb) that cover about 330 Mb and account for 93.5% of the 353 Mb of the assembled genomic sequences of the elite Chinese watermelon line 97103 (Citrullus lanatus var. lanatus). The genetic map was constructed using an F8 population of 103 recombinant inbred lines (RILs). The RILs are derived from a cross between the line 97103 and the United States Plant Introduction (PI) 296341-FR (C. lanatus var. citroides) that contains resistance to fusarium wilt (races 0, 1, and 2). The genetic map consists of eleven linkage groups that include 698 simple sequence repeat (SSR), 219 insertion-deletion (InDel) and 36 structure variation (SV) markers and spans ∼800 cM with a mean marker interval of 0.8 cM. Using fluorescent in situ hybridization (FISH) with 11 BACs that produced chromosome-specifc signals, we have depicted watermelon chromosomes that correspond to the eleven linkage groups constructed in this study. The high resolution genetic map developed here should be a useful platform for the assembly of the watermelon genome, for the development of sequence-based markers used in breeding programs, and for the identification of genes associated with important agricultural traits.


BMC Genomics | 2008

Gene expression in developing watermelon fruit

W. Patrick Wechter; Amnon Levi; Karen R. Harris; Angela R. Davis; Zhangjun Fei; Nurit Katzir; James J. Giovannoni; Ayelet Salman-Minkov; Alvaro G. Hernandez; Jyothi Thimmapuram; Yaakov Tadmor; Vitaly Portnoy; Tova Trebitsh

BackgroundCultivated watermelon form large fruits that are highly variable in size, shape, color, and content, yet have extremely narrow genetic diversity. Whereas a plethora of genes involved in cell wall metabolism, ethylene biosynthesis, fruit softening, and secondary metabolism during fruit development and ripening have been identified in other plant species, little is known of the genes involved in these processes in watermelon. A microarray and quantitative Real-Time PCR-based study was conducted in watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] in order to elucidate the flow of events associated with fruit development and ripening in this species. RNA from three different maturation stages of watermelon fruits, as well as leaf, were collected from field grown plants during three consecutive years, and analyzed for gene expression using high-density photolithography microarrays and quantitative PCR.ResultsHigh-density photolithography arrays, composed of probes of 832 EST-unigenes from a subtracted, fruit development, cDNA library of watermelon were utilized to examine gene expression at three distinct time-points in watermelon fruit development. Analysis was performed with field-grown fruits over three consecutive growing seasons. Microarray analysis identified three hundred and thirty-five unique ESTs that are differentially regulated by at least two-fold in watermelon fruits during the early, ripening, or mature stage when compared to leaf. Of the 335 ESTs identified, 211 share significant homology with known gene products and 96 had no significant matches with any database accession. Of the modulated watermelon ESTs related to annotated genes, a significant number were found to be associated with or involved in the vascular system, carotenoid biosynthesis, transcriptional regulation, pathogen and stress response, and ethylene biosynthesis. Ethylene bioassays, performed with a closely related watermelon genotype with a similar phenotype, i.e. seeded, bright red flesh, dark green rind, etc., determined that ethylene levels were highest during the green fruit stage followed by a decrease during the white and pink fruit stages. Additionally, quantitative Real-Time PCR was used to validate modulation of 127 ESTs that were differentially expressed in developing and ripening fruits based on array analysis.ConclusionThis study identified numerous ESTs with putative involvement in the watermelon fruit developmental and ripening process, in particular the involvement of the vascular system and ethylene. The production of ethylene during fruit development in watermelon gives further support to the role of ethylene in fruit development in non-climacteric fruits.


Theoretical and Applied Genetics | 1994

RAPD-based genetic linkage map of blueberry derived from a cross between diploid species (Vaccinium darrowi and V. elliottii)

Lisa J. Rowland; Amnon Levi

An initial genetic linkage map for blueberry has been constructed from over 70 random amplified polymorphic DNA (RAPD) markers that segregated 1∶1 in a testcross population of 38 plants. The mapping population was derived from a cross between two diploid blueberry plants: the F1 interspecific hybrid (Vaccinium darrowi Camp x V. elliottii Chapm.) and another V. darrowi plant. The map currently comprises 12 linkage groups (in agreement with the basic blueberry chromosome number) and covers a total genetic distance of over 950cM, with a range of 3–30cM between adjacent markers. The use of such a map for identifying molecular markers linked to genes controlling chilling requirement and cold hardiness is discussed.


Euphytica | 1998

DNA fingerprinting of strawberry (Fragaria × ananassa) cultivars using randomly amplified polymorphic DNA (RAPD) markers

Chemda Degani; Lisa J. Rowland; Amnon Levi; Jerzy A. Hortyński; Gene J. Galletta

Forty-one of the major strawberry (Fragaria × ananassa Duch.) cultivars grown in the United States and Canada were examined for RAPD (randomly amplified polymorphic DNA) marker polymorphisms using 10mer primers (>50% GC content). A set of 10 primers produced 15 polymorphic fragments ranging in size between 450 and 1200 bp, which were more than sufficient to distinguish among all tested cultivars. Ten of the markers derived from seven primers were absolutely required for distinguishing the cultivars. A DNA fingerprinting table was constructed based on these results. In addition, similarity coefficients were calculated based on RAPD marker data and a dendogram was constructed using the unweighted pair group method of arithmetic averages (UPGMA). These results were compared with known pedigree data for the cultivars. Our results demonstrate that RAPD markers can be used effectively for strawberry cultivar identification.


Genetic Resources and Crop Evolution | 2005

Analysis based on RAPD and ISSR markers reveals closer similarities among Citrullus and Cucumis species than with Praecitrullus fistulosus (Stocks) Pangalo

Amnon Levi; Claude E. Thomas; Alvin M. Simmons; Judy A. Thies

A cucurbit species named Praecitrullus fistulosus (Stocks) Pangalo, which thrives in India, is considered to be a distant relative of watermelon. Recent experiments indicated that it has mild resistance to whiteflies (Bemisia tabaci). However, our attempts to cross various US plant introductions (PIs) of P. fistulosus with watermelon or other Citrullus PIs have not been successful. Thus, to determine genetic relatedness among those species, phylogenetic analysis [based on simple sequence repeat (SSR)–anchored (also termed ISSR), and randomly amplified polymorphic DNA (RAPD) markers] was conducted among PIs of P. fistulosus, Citrullus lanatus var. lanatus (watermelon), C. lanatus var. citroides and the wild Citrullus colocynthis. Phylogenetic relationships were also examined with Cucumis melo (melon), Cucumis sativus (cucumber), and wild Cucumis species including C. africanus, C. metuliferus, C. anguria, C. meeusei, and C. zeyheri. Wide genetic distance exists between Citrullus and Cucumis groups (8% genetic similarity). Phylogenetic relationships among Citrullus species and subspecies are closer (25–55% genetic similarity) as compared with those among most Cucumis species (14–68% genetic similarity). P. fistulosus appeared to be distant from both Cucumis and Citrullus species (genetic similarity between P. fistulosus and Cucumis or Citrullus groups is less than 3%). Although wide genetic differences and reproductive barriers exist among cucurbit species examined in this study, they are still considered as potential germplasm source for enhancing watermelon and melon crops using traditional breeding and biotechnology procedures.


BMC Genomics | 2014

Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

Padma Nimmakayala; Amnon Levi; Lavanya Abburi; Venkata Lakshmi Abburi; Yan R. Tomason; Thangasamy Saminathan; Venkata Gopinath Vajja; Sridhar Malkaram; Rishi Reddy; Todd C. Wehner; Sharon E. Mitchell; Umesh K. Reddy

BackgroundA large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.ResultsWe examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.ConclusionsInformation concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.


Plant Cell Reports | 2006

Genes expressed during the development and ripening of watermelon fruit

Amnon Levi; Angela R. Davis; A. Hernandez; P. Wechter; J. Thimmapuram; Tova Trebitsh; Yaakov Tadmor; Nurit Katzir; Vitaly Portnoy; S. King

A normalized cDNA library was constructed using watermelon flesh mRNA from three distinct developmental time-points and was subtracted by hybridization with leaf cDNA. Random cDNA clones of the watermelon flesh subtraction library were sequenced from the 5′ end in order to identify potentially informative genes associated with fruit setting, development, and ripening. One-thousand and forty-six 5′-end sequences (expressed sequence tags; ESTs) were assembled into 832 non-redundant sequences, designated as “EST-unigenes”. Of these 832 “EST-unigenes”, 254 (∼30%) have no significant homology to sequences published so far for other plant species. Additionally, 168 “EST-unigenes” (∼20%) correspond to genes with unknown function, whereas 410 “EST-unigenes” (∼50%) correspond to genes with known function in other plant species. These “EST-unigenes” are mainly associated with metabolism, membrane transport, cytoskeleton synthesis and structure, cell wall formation and cell division, signal transduction, nucleic acid binding and transcription factors, defense and stress response, and secondary metabolism. This study provides the scientific community with novel genetic information for watermelon as well as an expanded pool of genes associated with fruit development in watermelon. These genes will be useful targets in future genetic and functional genomic studies of watermelon and its development.


Plant and Cell Physiology | 2008

ACC Synthase Genes are Polymorphic in Watermelon (Citrullus spp.) and Differentially Expressed in Flowers and in Response to Auxin and Gibberellin

Ayelet Salman-Minkov; Amnon Levi; Shmuel Wolf; Tova Trebitsh

The flowering pattern of watermelon species (Citrullus spp.) is either monoecious or andromonoecious. Ethylene is known to play a critical role in floral sex determination of cucurbit species. In contrast to its feminizing effect in cucumber and melon, in watermelon ethylene promotes male flower development. In cucumber, the rate-limiting enzyme of ethylene biosynthesis, 1-aminocyclopropane-1-carboxylate (ACC) synthase (ACS), regulates unisexual flower development. To investigate the role of ethylene in flower development, we isolated four genomic sequences of ACS from watermelon (CitACS1-4). Both CitACS1 and CitACS3 are expressed in floral tissue. CitACS1 is also expressed in vegetative tissue and it may be involved in cell growth processes. Expression of CitACS1 is up-regulated by exogenous treatment with auxin, gibberellin or ACC, the immediate precursor of ethylene. No discernible differential floral sex-dependent expression pattern was observed for this gene. The CitACS3 gene is expressed in open flowers and in young staminate floral buds (male or hermaphrodite), but not in female flowers. CitACS3 is also up-regulated by ACC, and is likely to be involved in ethylene-regulated anther development. The expression of CitACS2 was not detected in vegetative or reproductive organs but was up-regulated by auxin. CitACS4 transcript was not detected under our experimental conditions. Restriction fragment length polymorphism (RFLP) and sequence tagged site (STS) marker analyses of the CitACS genes showed polymorphism among and within the different Citrullus groups, including watermelon cultivars, Citrullus lanatus var. lanatus, the central subspecies Citrullus lanatus var. citroides, and the desert species Citrullus colocynthis (L).

Collaboration


Dive into the Amnon Levi's collaboration.

Top Co-Authors

Avatar

Angela R. Davis

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Todd C. Wehner

North Carolina State University

View shared research outputs
Top Co-Authors

Avatar

Umesh K. Reddy

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Claude E. Thomas

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Padma Nimmakayala

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

W. Patrick Wechter

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Alvin M. Simmons

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Judy A. Thies

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Yan R. Tomason

West Virginia State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge