Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Umesh K. Reddy is active.

Publication


Featured researches published by Umesh K. Reddy.


Nature | 2012

Repeated polyploidization of Gossypium genomes and the evolution of spinnable cotton fibres

Andrew H. Paterson; Jonathan F. Wendel; Heidrun Gundlach; Hui Guo; Jerry Jenkins; Dianchuan Jin; Danny J. Llewellyn; Kurtis C. Showmaker; Shengqiang Shu; Mi-jeong Yoo; Robert L. Byers; Wei Chen; Adi Doron-Faigenboim; Mary V. Duke; Lei Gong; Jane Grimwood; Corrinne E. Grover; Kara Grupp; Guanjing Hu; Tae-Ho Lee; Jingping Li; Lifeng Lin; Tao Liu; Barry S. Marler; Justin T. Page; Alison W. Roberts; Elisson Romanel; William S. Sanders; Emmanuel Szadkowski; Xu Tan

Polyploidy often confers emergent properties, such as the higher fibre productivity and quality of tetraploid cottons than diploid cottons bred for the same environments. Here we show that an abrupt five- to sixfold ploidy increase approximately 60 million years (Myr) ago, and allopolyploidy reuniting divergent Gossypium genomes approximately 1–2 Myr ago, conferred about 30–36-fold duplication of ancestral angiosperm (flowering plant) genes in elite cottons (Gossypium hirsutum and Gossypium barbadense), genetic complexity equalled only by Brassica among sequenced angiosperms. Nascent fibre evolution, before allopolyploidy, is elucidated by comparison of spinnable-fibred Gossypium herbaceum A and non-spinnable Gossypium longicalyx F genomes to one another and the outgroup D genome of non-spinnable Gossypium raimondii. The sequence of a G. hirsutum AtDt (in which ‘t’ indicates tetraploid) cultivar reveals many non-reciprocal DNA exchanges between subgenomes that may have contributed to phenotypic innovation and/or other emergent properties such as ecological adaptation by polyploids. Most DNA-level novelty in G. hirsutum recombines alleles from the D-genome progenitor native to its New World habitat and the Old World A-genome progenitor in which spinnable fibre evolved. Coordinated expression changes in proximal groups of functionally distinct genes, including a nuclear mitochondrial DNA block, may account for clusters of cotton-fibre quantitative trait loci affecting diverse traits. Opportunities abound for dissecting emergent properties of other polyploids, particularly angiosperms, by comparison to diploid progenitors and outgroups.


BMC Genomics | 2011

Syntenic relationships between cucumber (Cucumis sativus L.) and melon (C. melo L.) chromosomes as revealed by comparative genetic mapping

Dawei Li; Hugo Cuevas; Luming Yang; Yuhong Li; Jordi Garcia-Mas; Juan Zalapa; Jack E. Staub; Feishi Luan; Umesh K. Reddy; Xiaoming He; Zhen-Hui Gong; Yiqun Weng

BackgroundCucumber, Cucumis sativus L. (2n = 2 × = 14) and melon, C. melo L. (2n = 2 × = 24) are two important vegetable species in the genus Cucumis (family Cucurbitaceae). Both species have an Asian origin that diverged approximately nine million years ago. Cucumber is believed to have evolved from melon through chromosome fusion, but the details of this process are largely unknown. In this study, comparative genetic mapping between cucumber and melon was conducted to examine syntenic relationships of their chromosomes.ResultsUsing two melon mapping populations, 154 and 127 cucumber SSR markers were added onto previously reported F2- and RIL-based genetic maps, respectively. A consensus melon linkage map was developed through map integration, which contained 401 co-dominant markers in 12 linkage groups including 199 markers derived from the cucumber genome. Syntenic relationships between melon and cucumber chromosomes were inferred based on associations between markers on the consensus melon map and cucumber draft genome scaffolds. It was determined that cucumber Chromosome 7 was syntenic to melon Chromosome I. Cucumber Chromosomes 2 and 6 each contained genomic regions that were syntenic with melon chromosomes III+V+XI and III+VIII+XI, respectively. Likewise, cucumber Chromosomes 1, 3, 4, and 5 each was syntenic with genomic regions of two melon chromosomes previously designated as II+XII, IV+VI, VII+VIII, and IX+X, respectively. However, the marker orders in several syntenic blocks on these consensus linkage maps were not co-linear suggesting that more complicated structural changes beyond simple chromosome fusion events have occurred during the evolution of cucumber.ConclusionsComparative mapping conducted herein supported the hypothesis that cucumber chromosomes may be the result of chromosome fusion from a 24-chromosome progenitor species. Except for a possible inversion, cucumber Chromosome 7 has largely remained intact in the past nine million years since its divergence from melon. Meanwhile, many structural changes may have occurred during the evolution of the remaining six cucumber chromosomes. Further characterization of the genomic nature of Cucumis species closely related to cucumber and melon might provide a better understanding of the evolutionary history leading to modern cucumber.


BMC Genomics | 2014

Single nucleotide polymorphisms generated by genotyping by sequencing to characterize genome-wide diversity, linkage disequilibrium, and selective sweeps in cultivated watermelon

Padma Nimmakayala; Amnon Levi; Lavanya Abburi; Venkata Lakshmi Abburi; Yan R. Tomason; Thangasamy Saminathan; Venkata Gopinath Vajja; Sridhar Malkaram; Rishi Reddy; Todd C. Wehner; Sharon E. Mitchell; Umesh K. Reddy

BackgroundA large single nucleotide polymorphism (SNP) dataset was used to analyze genome-wide diversity in a diverse collection of watermelon cultivars representing globally cultivated, watermelon genetic diversity. The marker density required for conducting successful association mapping depends on the extent of linkage disequilibrium (LD) within a population. Use of genotyping by sequencing reveals large numbers of SNPs that in turn generate opportunities in genome-wide association mapping and marker-assisted selection, even in crops such as watermelon for which few genomic resources are available. In this paper, we used genome-wide genetic diversity to study LD, selective sweeps, and pairwise FST distributions among worldwide cultivated watermelons to track signals of domestication.ResultsWe examined 183 Citrullus lanatus var. lanatus accessions representing domesticated watermelon and generated a set of 11,485 SNP markers using genotyping by sequencing. With a diverse panel of worldwide cultivated watermelons, we identified a set of 5,254 SNPs with a minor allele frequency of ≥ 0.05, distributed across the genome. All ancestries were traced to Africa and an admixture of various ancestries constituted secondary gene pools across various continents. A sliding window analysis using pairwise FST values was used to resolve selective sweeps. We identified strong selection on chromosomes 3 and 9 that might have contributed to the domestication process. Pairwise analysis of adjacent SNPs within a chromosome as well as within a haplotype allowed us to estimate genome-wide LD decay. LD was also detected within individual genes on various chromosomes. Principal component and ancestry analyses were used to account for population structure in a genome-wide association study. We further mapped important genes for soluble solid content using a mixed linear model.ConclusionsInformation concerning the SNP resources, population structure, and LD developed in this study will help in identifying agronomically important candidate genes from the genomic regions underlying selection and for mapping quantitative trait loci using a genome-wide association study in sweet watermelon.


BMC Genomics | 2012

Characterization of the small RNA component of leaves and fruits from four different cucurbit species

Guru Jagadeeswaran; Padma Nimmakayala; Yun Zheng; Kanchana Gowdu; Umesh K. Reddy; Ramanjulu Sunkar

BackgroundMicroRNAs (miRNAs) are a class of non-coding small RNAs involved in post-transcriptional regulation of gene expression critical for plant growth and development, stress responses and other diverse biological processes in plants. The Cucurbitaceae or cucurbit family represents some of economically important species, particularly those with edible and medicinal fruits. Genomic tools for the molecular analysis of members of this family are just emerging. Partial draft genome sequence became available recently for cucumber and watermelon facilitating investigation of the small RNA component of the transcriptomes in cucurbits.ResultsWe generated four small RNA libraries from bottle gourd (Lagenaria siceraria), Cucurbita moschata, Cucurbita pepo, and, watermelon (Citrullus lanatus var. lanatus) in order to identify conserved and novel lineage specific miRNAs in these cucurbits. Deep sequencing of small RNA libraries from these species resulted in 1,597,263, 532,948, 601,388, and 493,384 unique sRNA reads from bottle gourd, moschata, pepo and watermelon, respectively. Sequence analysis of these four libraries resulted in identification of 21 miRNA families that are highly conserved and 8 miRNA families that are moderately conserved in diverse dicots. We also identified 4 putative novel miRNAs in these plant species. Furthermore, the tasiRNAs were identified and their biogenesis was determined in these cucurbits. Small RNA blot analysis or q-PCR analyses of leaf and fruit tissues of these cucurbits showed differential expression of several conserved miRNAs. Interestingly, the abundance of several miRNAs in leaves and fruits of closely related C. moschata and C. pepo was also distinctly different. Target genes for the most conserved miRNAs are also predicted.ConclusionHigh-throughput sequencing of small RNA libraries from four cucurbit species has provided a glimpse of small RNA component in their transcriptomes. The analysis also showed considerable variation within four cucurbit species with regards to expression of individual miRNAs.


Genetic Resources and Crop Evolution | 2013

High frequency oligonucleotides: targeting active gene (HFO-TAG) markers revealed wide genetic diversity among Citrullus spp. accessions useful for enhancing disease or pest resistance in watermelon cultivars

Amnon Levi; Judy A. Thies; W. Patrick Wechter; Howard F. Harrison; Alvin M. Simmons; Umesh K. Reddy; Padma Nimmakayala; Zhangjun Fei

There is a continuous need to enhance watermelon cultivars for disease and pest resistance. Different U.S. Plant Introductions (PIs) of Citrullus lanatus subsp. lanatus var. lanatus [also known as C. lanatus (Thunb.) Matsum. et Nakai subsp. lanatus var. citroides (Bailey) Mansf. ex Greb.] (CLC) collected in southern Africa are a useful source for enhancing disease or pest resistance in watermelon cultivars. They are also valuable as rootstocks for grafted watermelon, particularly in fields infested with root-knot nematodes or Fusarium wilt. However, there is little information about genetic relationships among these PIs. In this study, genetic diversity was examined among 74 CLC PIs collected from their center of origin in southern Africa. Also, 15 Citrullus lanatus subsp. lanatus (CLL) PIs and the American heirloom cultivars Charleston Gray and Black Diamond (Citrullus lanatus subsp. vulgaris (Schrader ex Eckl. et Zeyh.) Fursa) (CLV) and five Citrullus colocynthis (L.) Schrader (CC) PIs collected in different locations throughout the world were used as out-groups in the phylogenetic analysis for the CLC PIs. Twenty-three high frequency oligonucleotides—targeting active gene (HFO-TAG) primers were used in polymerase chain reaction (PCR) experiments to produce a total of 562 polymorphic markers among the Citrullus PIs and cultivars. Cluster and multidimensional scaling plot analysis produced distinct groups of CLC, CLL, and CC PIs. Several PIs that were designated as CLC or CLL were in transitional positions, indicating that they are the result of gene flow between the major Citrullus groups or subgroups. Population structure analysis indicated that CLC comprises two subgroups; each containing a set of unique alleles. Also, unique alleles exist in the CLL and the CC genotypes. Overall, broad genetic diversity exists among the Citrullus PIs. The data in this study should be useful for identifying PIs with a wide genetic distance between them that could be used in breeding programs aiming to develop heterotic F1 hybrid rootstock lines for grafted watermelon.


G3: Genes, Genomes, Genetics | 2014

High-resolution genetic map for understanding the effect of genome-wide recombination rate on nucleotide diversity in watermelon.

Umesh K. Reddy; Padma Nimmakayala; Amnon Levi; Venkata Lakshmi Abburi; Thangasamy Saminathan; Yan R. Tomason; Gopinath Vajja; Rishi Reddy; Lavanya Abburi; Todd C. Wehner; Yefim I. Ronin; Abraham Karol

We used genotyping by sequencing to identify a set of 10,480 single nucleotide polymorphism (SNP) markers for constructing a high-resolution genetic map of 1096 cM for watermelon. We assessed the genome-wide variation in recombination rate (GWRR) across the map and found an association between GWRR and genome-wide nucleotide diversity. Collinearity between the map and the genome-wide reference sequence for watermelon was studied to identify inconsistency and chromosome rearrangements. We assessed genome-wide nucleotide diversity, linkage disequilibrium (LD), and selective sweep for wild, semi-wild, and domesticated accessions of Citrullus lanatus var. lanatus to track signals of domestication. Principal component analysis combined with chromosome-wide phylogenetic study based on 1563 SNPs obtained after LD pruning with minor allele frequency of 0.05 resolved the differences between semi-wild and wild accessions as well as relationships among worldwide sweet watermelon. Population structure analysis revealed predominant ancestries for wild, semi-wild, and domesticated watermelons as well as admixture of various ancestries that were important for domestication. Sliding window analysis of Tajima’s D across various chromosomes was used to resolve selective sweep. LD decay was estimated for various chromosomes. We identified a strong selective sweep on chromosome 3 consisting of important genes that might have had a role in sweet watermelon domestication.


BMC Genetics | 2008

Simple sequence repeat markers useful for sorghum downy mildew (Peronosclerospora sorghi) and related species

Ramasamy Perumal; Padmavathi Nimmakayala; Saradha R. Erattaimuthu; Eun-Gyu No; Umesh K. Reddy; Louis K. Prom; Gary N. Odvody; Douglas G. Luster; Clint W. Magill

BackgroundA recent outbreak of sorghum downy mildew in Texas has led to the discovery of both metalaxyl resistance and a new pathotype in the causal organism, Peronosclerospora sorghi. These observations and the difficulty in resolving among phylogenetically related downy mildew pathogens dramatically point out the need for simply scored markers in order to differentiate among isolates and species, and to study the population structure within these obligate oomycetes. Here we present the initial results from the use of a biotin capture method to discover, clone and develop PCR primers that permit the use of simple sequence repeats (microsatellites) to detect differences at the DNA level.ResultsAmong the 55 primers pairs designed from clones from pathotype 3 of P. sorghi, 36 flanked microsatellite loci containing simple repeats, including 28 (55%) with dinucleotide repeats and 6 (11%) with trinucleotide repeats. A total of 22 microsatellites with CA/AC or GT/TG repeats were the most abundant (40%) and GA/AG or CT/TC types contribute 15% in our collection. When used to amplify DNA from 19 isolates from P. sorghi, as well as from 5 related species that cause downy mildew on other hosts, the number of different bands detected for each SSR primer pair using a LI-COR- DNA Analyzer ranged from two to eight. Successful cross-amplification for 12 primer pairs studied in detail using DNA from downy mildews that attack maize (P. maydis & P. philippinensis), sugar cane (P. sacchari), pearl millet (Sclerospora graminicola) and rose (Peronospora sparsa) indicate that the flanking regions are conserved in all these species. A total of 15 SSR amplicons unique to P. philippinensis (one of the potential threats to US maize production) were detected, and these have potential for development of diagnostic tests. A total of 260 alleles were obtained using 54 microsatellites primer combinations, with an average of 4.8 polymorphic markers per SSR across 34 Peronosclerospora, Peronospora and Sclerospora spp isolates studied. Cluster analysis by UPGMA as well as principal coordinate analysis (PCA) grouped the 34 isolates into three distinct groups (all 19 isolates of Peronosclerospora sorghi in cluster I, five isolates of P. maydis and three isolates of P. sacchari in cluster II and five isolates of Sclerospora graminicola in cluster III).ConclusionTo our knowledge, this is the first attempt to extensively develop SSR markers from Peronosclerospora genomic DNA. The newly developed SSR markers can be readily used to distinguish isolates within several species of the oomycetes that cause downy mildew diseases. Also, microsatellite fragments likely include retrotransposon regions of DNA and these sequences can serve as useful genetic markers for strain identification, due to their degree of variability and their widespread occurrence among sorghum, maize, sugarcane, pearl millet and rose downy mildew isolates.


Molecular Breeding | 2013

Map-based molecular diversity, linkage disequilibrium and association mapping of fruit traits in melon

Yan R. Tomason; Padma Nimmakayala; Amnon Levi; Umesh K. Reddy

Melon has tremendous fruit diversity, the product of complex interactions of consumer preferences in different countries and a wide range of agro-climatic zones. Understanding footprints of divergence underlying formation of various morphotypes is important for developing sustainable and high-quality melons. Basic understanding of population structure and linkage disequilibrium (LD) is limited in melon and has lagged behind other crops. Characterization of population structure and LD are essential for carrying out association mapping of quantitative trait loci (QTL) underlying various complex traits. Mapped single-locus microsatellite markers are known to be very valuable for resolving the population structure and 268 such markers were used in the current study to resolve population structure and LD pattern using 87 accessions of melons belonging to Eastern European, Euro-North American and Asian types. A mixed linear model was implemented to detect QTL for various fruit traits. Various levels of QTL with high to moderate stringency were detected for fruit shape, fruit weight, soluble solids, and rind pressure and a majority of them was found to be in agreement with the previously published data, indicating that association mapping can be very useful for melon molecular breeding. Minor discrepancies in the position, strength and the variation explained by the QTL present between the methods of association and recombinant mapping approaches can be bridged if more melon groups and larger sets of accessions are involved in future studies, combined with high-throughput marker panels.


Plant Genetic Resources | 2010

Genetic reticulation and interrelationships among citrullus species as revealed by joint analysis of shared AFLPs and species-specific SSR alleles

Padmavathi Nimmakayala; Yan R. Tomason; Jooha Jeong; Sathish K. Ponniah; Anoji Karunathilake; Amnon Levi; Ramasamy Perumal; Umesh K. Reddy

Thirty-one accessions of Citrullus spp. belonging to Citrullus lanatus var. lanatus , C. lanatus var. citroides and Citrullus colocynthis were subjected to phylogenetic analysis using combined datasets of amplified fragment length polymorphisms (AFLPs) and simple sequence repeats (SSRs). Tree topologies inferred by neighbour-joining analysis have resolved the phylogenic relationships among the species with special reference to established taxonomic classification. In this study, we have clearly resolved species boundaries of various taxa of citroides , lanatus and colocynthis into three well-supported clusters. Clustering pattern of principal component analysis with the shared polymorphisms using the subsets of data between any two taxon combinations helped to elucidate the introgression and interrelationships among the species. We report two major groups of C. lanatus taxa, one of which has undergone wide introgressions with the taxa of C. lanatus var. citroides and C. colocynthis . In this paper, we identified 583 AFLP bands that are polymorphic within the var. lanatus of C. lanatus , which is the largest set ever reported. The species-specific diagnostic SSRs and polymorphic AFLPs that are informative within and between the taxa reported in this paper would be immensely useful for future studies of these economically important genera.


PLOS ONE | 2014

Identification of Gene-Specific Polymorphisms and Association with Capsaicin Pathway Metabolites in Capsicum annuum L. Collections

Umesh K. Reddy; Aldo Almeida; Venkata Lakshmi Abburi; Suresh Babu Alaparthi; Desiree Unselt; Gerald R. Hankins; Minkyu Park; Doil Choi; Padmavathi Nimmakayala

Pepper (Capsicum annuum L.) is an economically important crop with added nutritional value. Production of capsaicin is an important quantitative trait with high environmental variance, so the development of markers regulating capsaicinoid accumulation is important for pepper breeding programs. In this study, we performed association mapping at the gene level to identify single nucleotide polymorphisms (SNPs) associated with capsaicin pathway metabolites in a diverse Capsicum annuum collection during two seasons. The genes Pun1, CCR, KAS and HCT were sequenced and matched with the whole-genome sequence draft of pepper to identify SNP locations and for further characterization. The identified SNPs for each gene underwent candidate gene association mapping. Association mapping results revealed Pun1 as a key regulator of major metabolites in the capsaicin pathway mainly affecting capsaicinoids and precursors for acyl moieties of capsaicinoids. Six different SNPs in the promoter sequence of Pun1 were found associated with capsaicin in plants from both seasons. Our results support that CCR is an important control point for the flux of p-coumaric acid to specific biosynthesis pathways. KAS was found to regulate the major precursors for acyl moieties of capsaicinoids and may play a key role in capsaicinoid production. Candidate gene association mapping of Pun1 suggested that the accumulation of capsaicinoids depends on the expression of Pun1, as revealed by the most important associated SNPs found in the promoter region of Pun1.

Collaboration


Dive into the Umesh K. Reddy's collaboration.

Top Co-Authors

Avatar

Padma Nimmakayala

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Amnon Levi

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Thangasamy Saminathan

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Yan R. Tomason

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Venkata Lakshmi Abburi

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Venkata Gopinath Vajja

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Gopinath Vajja

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Lavanya Abburi

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Sridhar Malkaram

West Virginia State University

View shared research outputs
Top Co-Authors

Avatar

Todd C. Wehner

North Carolina State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge