Amodio Fuggi
Seconda Università degli Studi di Napoli
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amodio Fuggi.
Functional Plant Biology | 2005
Petronia Carillo; Gabriella Mastrolonardo; Francesco Nacca; Amodio Fuggi
The combined effects of nitrate (0, 0.1, 1, 10 mm) and salt (0, 100 mm NaCl) on nitrogen metabolism in durum wheat seedlings were investigated by analysis of nitrate reductase (NR) expression and activity, and metabolite content. High salinity (100 mm NaCl) reduced shoot growth more than root growth. The effect was independent of nitrate concentration. NR mRNA was present at a low level in both leaves and roots of plants grown in a nitrogen-free medium. NaCl increased NR mRNA at low nitrate, suggesting that chloride can mimic nitrate as a signal molecule to induce transcription in both roots and leaves. However, the level of NR protein remained low in salt-stressed plants, indicating an inhibitory effect of salt on translation of NR mRNA or an increase in protein degradation. The lower activity of nitrate reductase in leaves of high-nitrate treated plants under salinity suggested a restriction of NO3- transport to the shoot under salinity. Salt treatment promoted photorespiration, inhibiting carbohydrate accumulation in plants grown on low nitrate media. Under salinity free amino acids, in particular proline and asparagine, and glycine betaine could function as osmolytes to balance water potential within the cell, especially when nitrogen availability exceeded the need for growth.
Functional Plant Biology | 2008
Petronia Carillo; Gabriella Mastrolonardo; Francesco Nacca; Danila Parisi; Angelo Verlotta; Amodio Fuggi
We studied the effect of salinity on amino acid, proline and glycine betaine accumulation in leaves of different stages of development in durum wheat under high and low nitrogen supply. Our results suggest that protective compounds against salt stress are accumulated in all leaves. The major metabolites are glycine betaine, which preferentially accumulates in younger tissues, and proline, which is found predominantly in older tissues. Proline tended to accumulate early, at the onset of the stress, while glycine betaine accumulation was observed during prolonged stress. Nitrate reductase (NR) and glutamate synthase (GOGAT) are positively correlated with these compatible solutes: proline is associated with NR in the oldest leaves of high-nitrate plants and glycine betaine is associated with GOGAT in the youngest leaves of both low- and high-nitrate plants. In high-nitrate conditions proline accounts for more than 39% of the osmotic adjustment in the cytoplasmic compartments of old leaves. Its nitrogen-dependent accumulation may offer an important advantage in that it can be metabolised to allow reallocation of energy, carbon and nitrogen from the older leaves to the younger tissues. The contribution of glycine betaine is higher in young leaves and is independent of nitrogen nutrition.
Archive | 2011
Petronia Carillo; Maria Grazia Annunziata; Giovanni Pontecorvo; Amodio Fuggi; Pasqualina Woodrow
Salinity is one of the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield (R Munns & Tester, 2008). Salinization affects many irrigated areas mainly due to the use of brackish water. Worldwide, more than 45 million hectares of irrigated land have been damaged by salt, and 1.5 million hectares are taken out of production each year as a result of high salinity levels in the soil (R Munns & Tester, 2008). High salinity affects plants in several ways: water stress, ion toxicity, nutritional disorders, oxidative stress, alteration of metabolic processes, membrane disorganization, reduction of cell division and expansion, genotoxicity (Hasegawa, Bressan, Zhu, & Bohnert, 2000; R. Munns, 2002; Zhu, 2007). Together, these effects reduce plant growth, development and survival. During the onset and development of salt stress within a plant, all the major processes such as photosynthesis, protein synthesis and energy and lipid metabolism are affected (Parida & Das, 2005). During initial exposure to salinity, plants experience water stress, which in turn reduces leaf expansion. The osmotic effects of salinity stress can be observed immediately after salt application and are believed to continue for the duration of exposure, resulting in inhibited cell expansion and cell division, as well as stomatal closure (T. J. Flowers, 2004; R. Munns, 2002). During long-term exposure to salinity, plants experience ionic stress, which can lead to premature senescence of adult leaves, and thus a reduction in the photosynthetic area available to support continued growth (Cramer & Nowak, 1992). In fact, excess sodium and more importantly chloride has the potential to affect plant enzymes and cause cell swelling, resulting in reduced energy production and other physiological changes (Larcher 1980). Ionic stress results in premature senescence of older leaves and in toxicity symptoms (chlorosis, necrosis) in mature leaves due to high Na+ which affects plants by disrupting protein synthesis and interfering with enzyme activity (Hasegawa, Bressan, Zhu, & Bohnert, 2000; R. Munns, 2002; R Munns & Termaat, 1986). Many plants have evolved several mechanisms either to exclude salt from their cells or to tolerate its presence within the cells. In this chapter, we mainly discuss about soil salinity, its effects on plants and tolerance mechanisms which permit the plants to withstand stress, with particular emphasis on ion homeostasis, Na+ exclusion and tissue tolerance. Moreover we give a synthetic overview of the two major approaches that have been used to improve stress tolerance: exploitation of natural genetic variations and generation of transgenic plants with novel genes or altered expression levels of the existing genes. A fundamental biological understanding and knowledge of the effects of salt stress on plants is necessary to provide additional
Physiologia Plantarum | 2017
Pasqualina Woodrow; Loredana F. Ciarmiello; Maria Grazia Annunziata; Severina Pacifico; Federica Iannuzzi; Antonio Mirto; Luisa D'Amelia; Emilia Dell'Aversana; Simona Piccolella; Amodio Fuggi; Petronia Carillo
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Theoretical and Applied Genetics | 2010
Pasqualina Woodrow; Giovanni Pontecorvo; Stefania Fantaccione; Amodio Fuggi; Ioannis Kafantaris; Danila Parisi; Petronia Carillo
Long terminal repeat retrotransposons are the most abundant mobile elements in the plant genome and play an important role in the genome reorganization induced by environmental challenges. Their success depends on the ability of their promoters to respond to different signaling pathways that regulate plant adaptation to biotic and abiotic stresses. We have isolated a new Ty1-copia-like retrotransposon, named Ttd1a from the Triticum durum L. genome. To get insight into stress activation pathways in Ttd1a, we investigated the effect of salt and light stresses by RT-PCR and S-SAP profiling. We screened for Ttd1a insertion polymorphisms in plants grown to stress and showed that one new insertion was located near the resistance gene. Our analysis showed that the activation and mobilization of Ttd1a was controlled by salt and light stresses, which strengthened the hypothesis that stress mobilization of this element might play a role in the defense response to environmental stresses.
Frontiers in Plant Science | 2017
Maria Grazia Annunziata; Loredana F. Ciarmiello; Pasqualina Woodrow; Eugenia Maximova; Amodio Fuggi; Petronia Carillo
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg−1 in control roots to about 530 mOsmol kg−1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Molecular Biology Reports | 2011
Pasqualina Woodrow; Giovanni Pontecorvo; Loredana F. Ciarmiello; Amodio Fuggi; Petronia Carillo
Stress modulation of retrotransposons may play a role in generating host genetic plasticity in response to environmental stress. Transposable elements have been suggested to contribute to the evolution of genes, by providing cis-regulatory elements leading to changes in expression patterns. Indeed, their promoter elements are similar to those of plant defence genes and may bind similar defence-induced transcription factors. We previously isolated a new Ty1-copia retrontrasposon named Ttd1a and showed its activation and mobilization in salt and light stresses. Here, using a retard mobility assay in Triticum durum L. crude extracts, we showed that the CAAT motif present in the Ttd1a retrotransposon promoter, is involved in DNA–protein binding under salt and light stresses and therefore in the regulation of Ttd1a activity. Data presented in this paper suggest that nuclear proteins can interact with the CAAT motif either directly or indirectly and enhance Ttd1a by a specific ligand-dependent activation under stress.
Archive | 2011
Loredana F. Ciarmiello; Pasqualina Woodrow; Amodio Fuggi; Giovanni Pontecorvo; Petronia Carillo
Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. Plants as sessile organisms are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. However stresses are not necessarily a problem for plants because they have evolved effective mechanisms to avoid or reduce the possible damages. The response to changes in environment can be rapid, depending on the type of stress and can involve either adaptation mechanisms, which allow them to survive the adverse conditions, or specific growth habitus to avoid stress conditions. In fact, plants can perceive abiotic stresses and elicit appropriate responses with altered metabolism, growth and development. The regulatory circuits include stress sensors, signalling pathways comprising a network of protein-protein interactions, transcription factors and promoters, and finally the output proteins or metabolites (table 1). A number of abiotic stresses such as extreme temperatures, high light intensity, osmotic stresses, heavy metals and a number of herbicides and toxins lead to over production of reactive oxygen species (ROS) including H2O2 causing extensive cellular damage and inhibition of photosynthesis. Normally, ROS are rapidly removed by antioxidative mechanisms, but this removal can be impaired by stresses themselves (Allan & Fluhr, 2007), causing a rise in their intracellular concentration and an increase of the damage. To prevent or repair these damages, plant cells use a complex defence system, involving a number of antioxidative stress-related defence genes that, in turn, induce changes in the biochemical plant machinery. Studies have shown that ROS probably require additional molecules to transduce and amplify defence signals. ROS production and anti-oxidant processes, all act in a synergistic, additive or antagonistic way, related to the control of oxidative stress. Responses to stress are not linear pathways, but are complex integrated circuits involving multiple pathways and in specific cellular compartments, tissues, and the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus (Dombrowski, 2009). Onset of a stress triggers some (mostly unknown) initial sensors, which then activate cytoplasmic Ca2+ and protein signalling pathways, leading to stress-responsive gene expression and physiological changes (Bressan et al., 1998;
Archives of Microbiology | 1984
Amodio Fuggi; Vincenza Vona; Vittoria Di Martino Rigano; Catello Di Martino; Anna Martello; Carmelo Rigano
In the unicellular non-vacuolate red alga Cyanidium caldarium nitrate uptake occurs through two specific permease systems which, on the basis of kinetic constants can be defined as low affinity system and high affinity system. The high affinity system is saturated at very low nitrate concentrations (<1 μM), whereas the low affinity system is saturated only at high nitrate concentrations (Km=0.45±0.10 mM). The low affinity system is present in cells growing under conditions of nitrogen limitation as well as in cells growing in excess nitrate. In contrast, the high affinity system is present only in cells growing under conditions of nitrogen limitation. The high affinity system works only at acid pH and is inactive at neutral pH. The low affinity system is active both at acid and at neutral pH.
Archive | 2012
Pasqualina Woodrow; Giovanni Pontecorvo; Loredana F. Ciarmiello; Maria Grazia Annunziata; Amodio Fuggi; Petronia Carillo
Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field.