Loredana F. Ciarmiello
University of Naples Federico II
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Loredana F. Ciarmiello.
Physiologia Plantarum | 2017
Pasqualina Woodrow; Loredana F. Ciarmiello; Maria Grazia Annunziata; Severina Pacifico; Federica Iannuzzi; Antonio Mirto; Luisa D'Amelia; Emilia Dell'Aversana; Simona Piccolella; Amodio Fuggi; Petronia Carillo
Durum wheat plants are extremely sensitive to drought and salinity during seedling and early development stages. Their responses to stresses have been extensively studied to provide new metabolic targets and improving the tolerance to adverse environments. Most of these studies have been performed in growth chambers under low light [300-350 µmol m-2 s-1 photosynthetically active radiation (PAR), LL]. However, in nature plants have to face frequent fluctuations of light intensities that often exceed their photosynthetic capacity (900-2000 µmol m-2 s-1 ). In this study we investigated the physiological and metabolic changes potentially involved in osmotic adjustment and antioxidant defense in durum wheat seedlings under high light (HL) and salinity. The combined application of the two stresses decreased the water potential and stomatal conductance without reducing the photosynthetic efficiency of the plants. Glycine betaine (GB) synthesis was inhibited, proline and glutamate content decreased, while γ-aminobutyric acid (GABA), amides and minor amino acids increased. The expression level and enzymatic activities of Δ1-pyrroline-5-carboxylate synthetase, asparagine synthetase and glutamate decarboxylase, as well as other enzymatic activities of nitrogen and carbon metabolism, were analyzed. Antioxidant enzymes and metabolites were also considered. The results showed that the complex interplay seen in durum wheat plants under salinity at LL was simplified: GB and antioxidants did not play a main role. On the contrary, the fine tuning of few specific primary metabolites (GABA, amides, minor amino acids and hexoses) remodeled metabolism and defense processes, playing a key role in the response to simultaneous stresses.
Molecular Biology Reports | 2011
Loredana F. Ciarmiello; Pasquale Piccirillo; Giovanni Pontecorvo; Antonio De Luca; Ioannis Kafantaris; Pasqualina Woodrow
English walnut (Juglans regia L.) is the most economically important species from all the 21 species belonging to the genus Juglans and is an important and healthy food as well as base material for timber industry. The aim of this study was to develop a simple technique for specific characterization of English walnut using DNA method. The first and second internal transcribed spacers (ITS1 and ITS2) as well as the intervening 5.8S coding region of the rRNA gene for 18 cultivars of J. regia L. isolated from different geographic origins were characterized. The size of the spacers sequences ranged from 257 to 263 bases for ITS1 and from 217 to 219 bases for ITS2. Variation of GC contents has also been observed and scored as 55–56.7 and 57.1–58.9% for ITS1 and ITS2, respectively. This data exhibited the presence of polymorphism among cultivars. Alignment of the ITS1-5.8S-ITS2 sequences from 18 walnut cultivars showed that there were 244 single nucleotide polymorphisms (SNPs) and 1 short insertion–deletion (indel) at 5′ end ITS1. Amplification refractory mutation system strategy was successfully applied to the SNP markers of the ITS1 and ITS2 sequences for the fingerprinting analysis of 17 on 18 walnut cultivars. The prediction of ITS1 and ITS2 RNA secondary structure from each cultivar was improved by detecting key functional elements shared by all sequences in the alignments. Phylogenetic analysis of the ITS1-5.8S-ITS2 region clearly separated the isolated sequences into two clusters. The results showed that ITS1 and ITS2 region could be used to discriminate these walnut cultivars.
Frontiers in Plant Science | 2017
Maria Grazia Annunziata; Loredana F. Ciarmiello; Pasqualina Woodrow; Eugenia Maximova; Amodio Fuggi; Petronia Carillo
Plants are currently experiencing increasing salinity problems due to irrigation with brackish water. Moreover, in fields, roots can grow in soils which show spatial variation in water content and salt concentration, also because of the type of irrigation. Salinity impairs crop growth and productivity by inhibiting many physiological and metabolic processes, in particular nitrate uptake, translocation, and assimilation. Salinity determines an increase of sap osmolality from about 305 mOsmol kg−1 in control roots to about 530 mOsmol kg−1 in roots under salinity. Root cells adapt to salinity by sequestering sodium in the vacuole, as a cheap osmoticum, and showing a rearrangement of few nitrogen-containing metabolites and sucrose in the cytosol, both for osmotic adjustment and oxidative stress protection, thus providing plant viability even at low nitrate levels. Mainly glycine betaine and sucrose at low nitrate concentration, and glycine betaine, asparagine and proline at high nitrate levels can be assumed responsible for the osmotic adjustment of the cytosol, the assimilation of the excess of ammonium and the scavenging of ROS under salinity. High nitrate plants with half of the root system under salinity accumulate proline and glutamine in both control and salt stressed split roots, revealing that osmotic adjustment is not a regional effect in plants. The expression level and enzymatic activities of asparagine synthetase and Δ1-pyrroline-5-carboxylate synthetase, as well as other enzymatic activities of nitrogen and carbon metabolism, are analyzed.
Molecular Biology Reports | 2011
Pasqualina Woodrow; Giovanni Pontecorvo; Loredana F. Ciarmiello; Amodio Fuggi; Petronia Carillo
Stress modulation of retrotransposons may play a role in generating host genetic plasticity in response to environmental stress. Transposable elements have been suggested to contribute to the evolution of genes, by providing cis-regulatory elements leading to changes in expression patterns. Indeed, their promoter elements are similar to those of plant defence genes and may bind similar defence-induced transcription factors. We previously isolated a new Ty1-copia retrontrasposon named Ttd1a and showed its activation and mobilization in salt and light stresses. Here, using a retard mobility assay in Triticum durum L. crude extracts, we showed that the CAAT motif present in the Ttd1a retrotransposon promoter, is involved in DNA–protein binding under salt and light stresses and therefore in the regulation of Ttd1a activity. Data presented in this paper suggest that nuclear proteins can interact with the CAAT motif either directly or indirectly and enhance Ttd1a by a specific ligand-dependent activation under stress.
Molecular Genetics and Genomics | 2004
B. De Felice; Robert R. Wilson; Massimo Nacca; Loredana F. Ciarmiello; C. Pinelli
Keloids are benign skin tumors that develop following wounding. A cDNA product from human keloid specimens was identified using the differential display technique. The full-length cDNA was cloned by RT-PCR using human keloid mRNA as template. The predicted product of the cDNA was found to be 99% identical to the ΔN-p63 gamma isotype of p63, a transcription factor that belongs to the family that includes the structurally related tumor suppressor p53 and p73. The ΔN-p63 isotype lacks the acidic N terminal region corresponding to the transactivation domain of p53. Since this can potentially block p53-mediated target gene transactivation, it may serve as a dominant-negative isoform. Real-Time RT-PCR analysis of RNAs from normal skin tissue and keloids showed that the ΔN-p63 isotype is specifically expressed in keloids, but is virtually undetectable in normal skin. Immunostaining of p63 in normal skin revealed that only basal cells of the epithelium expressed the protein, while in keloid tissues the antigen was detected in the nuclei of cells scattered through all layers of the epithelium and in fibroblast-like cells in the dermis. These results may indicate that aberrant p63 expression plays a role not only in malignant tumors but also in benign skin diseases that show hyperproliferation of epidermal cells in vivo. Moreover, this isoform of p63 could serve as a specific molecular marker for this human disease.
Archive | 2011
Loredana F. Ciarmiello; Pasqualina Woodrow; Amodio Fuggi; Giovanni Pontecorvo; Petronia Carillo
Abiotic stress is the primary cause of crop loss worldwide, reducing average yields for most major crop plants by more than 50%. Plants as sessile organisms are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. However stresses are not necessarily a problem for plants because they have evolved effective mechanisms to avoid or reduce the possible damages. The response to changes in environment can be rapid, depending on the type of stress and can involve either adaptation mechanisms, which allow them to survive the adverse conditions, or specific growth habitus to avoid stress conditions. In fact, plants can perceive abiotic stresses and elicit appropriate responses with altered metabolism, growth and development. The regulatory circuits include stress sensors, signalling pathways comprising a network of protein-protein interactions, transcription factors and promoters, and finally the output proteins or metabolites (table 1). A number of abiotic stresses such as extreme temperatures, high light intensity, osmotic stresses, heavy metals and a number of herbicides and toxins lead to over production of reactive oxygen species (ROS) including H2O2 causing extensive cellular damage and inhibition of photosynthesis. Normally, ROS are rapidly removed by antioxidative mechanisms, but this removal can be impaired by stresses themselves (Allan & Fluhr, 2007), causing a rise in their intracellular concentration and an increase of the damage. To prevent or repair these damages, plant cells use a complex defence system, involving a number of antioxidative stress-related defence genes that, in turn, induce changes in the biochemical plant machinery. Studies have shown that ROS probably require additional molecules to transduce and amplify defence signals. ROS production and anti-oxidant processes, all act in a synergistic, additive or antagonistic way, related to the control of oxidative stress. Responses to stress are not linear pathways, but are complex integrated circuits involving multiple pathways and in specific cellular compartments, tissues, and the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus (Dombrowski, 2009). Onset of a stress triggers some (mostly unknown) initial sensors, which then activate cytoplasmic Ca2+ and protein signalling pathways, leading to stress-responsive gene expression and physiological changes (Bressan et al., 1998;
Journal of Agricultural and Food Chemistry | 2014
Loredana F. Ciarmiello; Maria Fiorella Mazzeo; Paola Minasi; Angela Peluso; Antonio De Luca; Pasquale Piccirillo; Rosa Anna Siciliano; Virginia Carbone
Hazelnuts exhibit functional properties due to their content in fatty acids and phenolic compounds that could positively affect human health. The food industry requires precise traits for morphological, chemical, and physical kernel features so that some cultivars could be more suitable for specific industrial processing. In this study, agronomical and morphological features of 29 hazelnut cultivars were evaluated and a detailed structural characterization of kernel polyphenols was performed, confirming the presence of protocatechuic acid, flavan-3-ols such as catechin, procyanidin B2, six procyanidin oligomers, flavonols, and one dihydrochalcone in all the analyzed cultivars. In addition, an innovative methodology based on the MALDI-TOF mass spectrometric analysis of peptide/protein components extracted from kernels was developed for the authentication of the most valuable cultivars. The proposed method is rapid, simple, and reliable and holds the potential to be applied in quality control processes. These results could be useful in hazelnut cultivar evaluation and choice for growers, breeders, and food industry.
Archive | 2012
Pasqualina Woodrow; Giovanni Pontecorvo; Loredana F. Ciarmiello; Maria Grazia Annunziata; Amodio Fuggi; Petronia Carillo
Plants are constantly exposed to changes in environmental conditions. When these changes are rapid and extreme, plants generally perceive them as stresses. Abiotic stresses are the most serious factors limiting the productivity of agricultural crops, with adverse effects on germination, plant vigour and crop yield. Responses to abiotic stresses are not linear pathways, but are complicated integrated circuits involving the interaction of additional cofactors and/or signalling molecules to coordinate a specified response to a given stimulus. The regulation of these responses requires proteins operating in signal transduction pathways, such as transcriptional factors, which modulate gene expression by binding to specific DNA sequences in the promoters of respective target genes. This type of transcriptional regulatory system is called regulon. At least four different regulons that are active in response to abiotic stresses have been identified. Dehydration-responsive element binding protein 1 (DREB1)/C-repeat binding factor (CBF) and DREB2 regulons function in ABA-independent gene expression, whereas the ABA-responsive element (ABRE) binding protein (AREB)/ABRE binding factor (ABF) regulon functions in ABA-dependent gene expression. In addition to these major pathways, other regulons, including the NAC and MYB/MYC regulons are involved in abiotic stress-responsive gene expression. Transcription factors (TFs) are powerful targets for genetic engineering in abiotic stress resistance in crop plants and many studies have been done in the last two decades on this topic. The aim of this book chapter is to give a comprehensive and up-to-date literature review in this field.
Molecular Biology Reports | 2012
Pasqualina Woodrow; Giovanni Pontecorvo; Loredana F. Ciarmiello
Long terminal repeat (LTR)-retrotransposons are mobile genetic elements that are ubiquitous in plants and constitute a major portion of their nuclear genomes. LTR- retrotransposons possess unique properties that make them appropriate for investigating relationships between populations, varieties and closely related species. Myrtus communis L. is an evergreen shrub growing spontaneously throughout the Mediterranean area. Accessions show significant variations for agriculturally important traits, so the development of specific molecular markers for conservation and characterization of myrtle germplasm is desirable to conserve biodiversity. In this study, we isolated the first retrotransposon Ty1-copia-like element (Tmc1) in Myrtus communis L. genome and used this as a molecular marker. We successfully employed the S-SAP marker system to specifically characterize four myrtle accessions belonging to different areas in the province of Caserta (Italy). The high level of polymorphism detected in isolated LTRs, make Tmc1 a good molecular marker for this species. Our findings confirm that retrotransposon-based molecular markers are particularly valuable tools for plant molecular characterization studies.
Food Chemistry | 2018
Antonio Mirto; Federica Iannuzzi; Petronia Carillo; Loredana F. Ciarmiello; Pasqualina Woodrow; Amodio Fuggi
The failure of the antioxidant scavenging system in advanced ripening stages, causing oxidative stress, is one of the most important factor of fruit decay. Production of rich antioxidant fruit could represent a way to delay fruit senescence and preserve its characteristics. We investigated the antioxidant metabolites (ascorbate, glutathione, tocopherols, and polyphenols) and enzymes (ascorbic peroxidases, peroxidases and polyphenol oxidases) involved in the antioxidant response in forty-three accessions of sweet cherry fruits from Campania region. Our results highlight accessions with high antioxidant metabolites contents but low enzymatic activities. These represent important factors in both pre- and post-harvest on the qualitative and nutritional characteristics of sweet cherry. Observed differences are probably due to endogenous characteristics making these accessions particularly interesting for breeding programs aimed to improve fruit quality and shelf-life and for addressing the cultivation of a specific characterized cultivar based on the intended use, fresh consumption or processed products.
Collaboration
Dive into the Loredana F. Ciarmiello's collaboration.
Consiglio per la ricerca e la sperimentazione in agricoltura
View shared research outputs