Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amos Orlofsky is active.

Publication


Featured researches published by Amos Orlofsky.


Journal of Immunology | 2003

NF-κB1 p50 Is Required for BLyS Attenuation of Apoptosis but Dispensable for Processing of NF-κB2 p100 to p52 in Quiescent Mature B Cells

Eunice N. Hatada; Richard K. G. Do; Amos Orlofsky; Hsiou-Chi Liou; Michael B. Prystowsky; Ian C. M. MacLennan; Jorge Caamano; Selina Chen-Kiang

B lymphocyte stimulator (BLyS), a TNF family protein essential for peripheral B cell development, functions primarily through attenuation of B cell apoptosis. In this study, we show that BLyS activates NF-κB through both classical and alternative pathways with distinct kinetics in quiescent mature B cells. It rapidly and transiently enhances the p50/p65 DNA binding activity and induces phosphorylation of IκBα characteristic of the classical NF-κB pathway, albeit maintaining IκBα at a constant level through ongoing protein synthesis and proteasome-mediated destruction. With delayed kinetics, BLyS promotes the processing of p100 to p52 and sustained formation of p52/RelB complexes via the alternative NF-κB pathway. p50 is dispensable for p100 processing. However, it is required to mediate the initial BLyS survival signals and concomitant activation of Bcl-xL in quiescent mature B cells ex vivo. Although also a target of BLyS activation, at least one of the A1 genes, A1-a, is dispensable for the BLyS survival function. These results suggest that BLyS mediates its survival signals in metabolically restricted quiescent B cells, at least in part, through coordinated activation of both NF-κB pathways and selective downstream antiapoptotic genes.


American Journal of Pathology | 2010

A Novel Mouse Model of Inflammatory Bowel Disease Links Mammalian Target of Rapamycin-Dependent Hyperproliferation of Colonic Epithelium to Inflammation-Associated Tumorigenesis

Lin Deng; Jin Feng Zhou; Rani S. Sellers; Jiu Feng Li; Andrew V. Nguyen; Yubao Wang; Amos Orlofsky; Qiang Liu; David A. Hume; Jeffrey W. Pollard; Leonard H. Augenlicht; Elaine Y. Lin

Inflammatory bowel disease (IBD) is a high-risk condition for human colorectal cancer. However, our mechanistic understanding of the link between inflammation and tumorigenesis in the colon is limited. Here we established a novel mouse model of colitis-associated cancer by genetically inactivating signal transducer and activator of transcription 3 (Stat3) in macrophages, with partial deletion in other myeloid and lymphoid cells. Inflammation developed in the colon of mutant mice spontaneously, and tumor lesions, including invasive carcinoma, arose in the inflamed region of the intestine with a frequency similar to that observed in human IBD patients. The development of both inflammation and tumors in the mutant mice required the presence of microflora. Indeed, inflammation was associated with disruption of colonic homeostasis, fulminant epithelial/tumor cell proliferation, and activation of the mammalian target of rapamycin (mTOR)-Stat3 pathway in epithelial and tumor cells. The activation of this pathway was essential for both the excess proliferation of epithelial/tumor cells and the disruption of colonic homeostasis in the mutant mice. Notably, a similar abnormal up-regulation of mTOR-Stat3 signaling was consistently observed in the colonic epithelial cells of human IBD patients with active disease. These studies demonstrate a novel mouse model of IBD-colorectal cancer progression in which disrupted immune regulation, mTOR-Stat3 signaling, and epithelial hyperproliferation are integrated and simultaneously linked to the development of malignancy.


Journal of Biological Chemistry | 2009

Host cell autophagy is induced by Toxoplasma gondii and contributes to parasite growth.

Yubao Wang; Louis M. Weiss; Amos Orlofsky

Autophagy has been shown to contribute to defense against intracellular bacteria and parasites. In comparison, the ability of such pathogens to manipulate host cell autophagy to their advantage has not been examined. Here we present evidence that infection by Toxoplasma gondii, an intracellular protozoan parasite, induces host cell autophagy in both HeLa cells and primary fibroblasts, via a mechanism dependent on host Atg5 but independent of host mammalian target of rapamycin suppression. Infection led to the conversion of LC3 to the autophagosome-associated form LC3-II, to the accumulation of LC3-containing vesicles near the parasitophorous vacuole, and to the relocalization toward the vacuole of structures labeled by the phosphatidylinositol 3-phosphate indicator YFP-2×FYVE. The autophagy regulator beclin 1 was concentrated in the vicinity of the parasitophorous vacuole in infected cells. Inhibitor studies indicated that parasite-induced autophagy is dependent on calcium signaling and on abscisic acid. At physiologically relevant amino acid levels, parasite growth became defective in Atg5-deficient cells, indicating a role for host cell autophagy in parasite recovery of host cell nutrients. A flow cytometric analysis of cell size as a function of parasite content revealed that autophagy-dependent parasite growth correlates with autophagy-dependent consumption of host cell mass that is dependent on parasite progression. These findings indicate a new role for autophagy as a pathway by which parasites may effectively compete with the host cell for limiting anabolic resources.


Journal of Immunology | 2002

Deficiency in the anti-apoptotic protein A1-a results in a diminished acute inflammatory response.

Amos Orlofsky; Louis M. Weiss; Nicole Kawachi; Michael B. Prystowsky

A1 is an anti-apoptotic member of the Bcl-2 family that is up-regulated in inflammatory myeloid cells. In the present study, we investigated the role of A1 in the maintenance of acute inflammation in mice. Mice possess three genes encoding highly related isoforms of A1. A1-a isoform mRNA was minimally expressed in resident peritoneal macrophages, but was present at a 300-fold higher level in inflammatory macrophages elicited by i.p. infection with Toxoplasma gondii. In comparison, A1-b and A1-d levels were 3- and 10-fold higher, respectively. Peritoneal leukocytosis was decreased in infected A1-a-deficient mice compared with wild-type, and this reduction was associated with a small but reproducible enhancement of survival. These effects could not be explained by an alteration in peritoneal parasite load, nor by increased apoptosis of infected inflammatory cells, which were protected from cell death by an A1-a-independent mechanism. Increased apoptosis in inflammatory neutrophils was observed sporadically in A1-a-deficient mice. Regulation of apoptosis by A1-a may be an important proinflammatory event in acute host responses.


Journal of Immunology | 2001

Requirement of A1-a for Bacillus Calmette-Guérin-Mediated Protection of Macrophages Against Nitric Oxide-Induced Apoptosis

Santhanam Kausalya; Robert Somogyi; Amos Orlofsky; Michael B. Prystowsky

The role of apoptosis in regulating the course of intracellular microbial infection is not well understood. We studied the relationship between apoptotic regulation and bacillus Calmette-Guérin (BCG) treatment in murine peritoneal exudate macrophages (PEM) and the J774 macrophage cell line. In both PEM and J774 cells, mRNA expression of the anti-apoptotic gene, A1, was selectively induced by BCG treatment as compared with other bcl2 family members (bcl-w, bcl-2, bcl-xl, bcl-xs, bax, bak, bad). In PEM, A1 expression was maximal by 8 h postinfection and was abrogated by the proteasomal inhibitor MG-132. The induction was independent of protein synthesis as well as the p38 mitogen-activated protein kinase and phosphatidylinositol 3-kinase pathways and did not require live organism. Three genes encoding closely related isoforms of A1 were all expressed; however, the A1-a isoform displayed the greatest fold induction in PEM. BCG-induced A1 expression was associated with protection of host macrophages from NO-mediated apoptosis in both PEM and J774 cells. BCG-mediated protection was abrogated in PEM derived from A1-a−/− mice, indicating a requirement of A1-a for survival of inflammatory macrophages.


Journal of Immunology | 2007

The Chemokine CCL6 Promotes Innate Immunity via Immune Cell Activation and Recruitment

Ana Lucia Coelho; Matthew Schaller; Claudia F. Benjamim; Amos Orlofsky; Cory M. Hogaboam; Steven L. Kunkel

Septic syndrome is a consequence of innate immune failure. Recent studies showed that the CC chemokine CCL6 enhanced antimicrobial immunity during experimental sepsis through an unknown mechanism. The present study demonstrates that transgenic CCL6 expression abolishes mortality in a septic peritonitis model via the modulation of resident peritoneal cell activation and, more importantly, through the recruitment of IFN-producing NK cells and killer dendritic cells into the peritoneum. Thus, CCL6 attenuates the immune failure during sepsis, in part, through a protective type 1-cytokine mediated mechanism.


Journal of Biological Chemistry | 2010

Coordinate control of host centrosome position, organelle distribution, and migratory response by Toxoplasma gondii via host mTORC2

Yubao Wang; Louis M. Weiss; Amos Orlofsky

The invasion of host cells by Toxoplasma gondii is accompanied by a reorganization of host cell structure, in which the host centrosome and Golgi apparatus are localized to the vacuole, and mitochondria, microtubules, and endolysosomes are recruited to the vacuole perimeter. The mechanism and functional significance of this process have not been well defined. Here, we report that the centrosome-vacuole association was abolished in mammalian target of rapamycin complex 2 (mTORC2)-deficient cells, which also displayed a disordered distribution of perivacuolar host mitochondria and lysosomes. Infection of fibroblasts led to stable, mTORC2-dependent activation of Akt, and Akt inhibition mimicked the effect of mTORC2 ablation on centrosome, mitochondria, and lysosome localization. Mobilization of the centrosome by Akt inhibition was abrogated by inhibitors of glycogen synthase kinase 3 (GSK3), implying that the centrosome is constrained to the vacuole through an mTORC2-Akt-GSK3 pathway. Infected cells were incapable of migration in a wounded monolayer model, and this effect was associated with the inability of centrosomes to reorient in the direction of migration. Both migration and centrosome reorientation were fully restored upon ablation of mTORC2. These findings provide the first linkage of host signals to parasite-mediated host cell reorganization and demonstrate migratory suppression as a novel functional consequence of this process that is associated with mTORC2-mediated centrosome constraint.


Journal of Immunology | 2009

Externally Triggered Egress Is the Major Fate of Toxoplasma gondii during Acute Infection

Tadakimi Tomita; Tatsuya Yamada; Louis M. Weiss; Amos Orlofsky

The apicomplexan parasite Toxoplasma gondii expands during acute infection via a cycle of invasion, intracellular replication, and lytic egress. Physiological regulation has not yet been demonstrated for either invasion or egress. We now report that, in contrast to cell culture systems, in which egress occurs only after five or more parasite divisions (2–3 days), intracellular residence is strikingly abbreviated in inflammatory cells in vivo, and early egress (after zero to two divisions) is the dominant parasite fate in acutely infected mice. Adoptive transfer experiments demonstrate rapid, reciprocal, kinetically uniform parasite transfer between donor and recipient compartments, with a t1/2 of ∼3 h. Inflammatory macrophages are major participants in this cycle of lytic egress and reinfection, which drives rapid macrophage turnover. Inflammatory triggering cells, principally macrophages, elicit egress in infected target macrophages, a process we term externally triggered egress (ETE). The mechanism of ETE does not require reactive oxygen or nitrogen species, the mitochondrial permeability transition pore, or a variety of signal transduction mediators, but is dependent on intracellular calcium and is highly sensitive to SB203580, an inhibitor of p38 MAPK as well as a related parasite-encoded kinase. SB203580 both inhibited the initiation of ETE and altered the progression of egress. Parasites recently completing a cycle of egress and reinfection were preferentially restricted in vivo, supporting a model in which ETE may favor host defense by a process of haven disruption. ETE represents a novel example of interaction between a parasite infectious cycle and host microenvironment.


Molecular and Biochemical Parasitology | 2010

3-Methyladenine blocks Toxoplasma gondii division prior to centrosome replication

Yubao Wang; Anuradha Karnataki; Marilyn Parsons; Louis M. Weiss; Amos Orlofsky

The apicomplexan Toxoplasma gondii replicates by endodyogeny, in which replicated organelles assemble into nascent daughter buds within the maternal parasite. The mechanisms governing this complex sequence are not understood. We now report that the kinase inhibitor 3-methlyadenine (3-MA) efficiently blocks T. gondii replication. The inhibition could not be attributed to the effects of 3-MA on mammalian phosphatidylinositol 3-kinase and host cell autophagy. Furthermore, we show that accumulation of host lysosomes around the parasitophorous vacuoles was unaffected. Most 3-MA-treated parasites failed to form daughter buds or replicate DNA, indicating arrest in G1 or early S-phase. Some 3-MA-treated parasites displayed abortive cell division, in which nuclear segregation to malformed daughter buds was incomplete or asymmetrical. Electron microscopy revealed the presence of residual body-like structures in many vacuoles, even in the absence of daughter buds. Most treated parasites had otherwise normal morphology and were able to resume replication upon drug removal. 3-MA-treated and control parasites were similar with respect to the extent of Golgi body division and apicoplast elongation; however, treated parasites rarely possessed replicated centrosomes or apicoplasts. These data are suggestive of a generalized blockade of T. gondii cell cycle progression at stages preceding centrosome replication, rather than arrest at a specific checkpoint. We hypothesize that 3-MA treatment triggers a cell cycle pause program that may serve to protect parasites during periods, such as subsequent to egress, when cell cycle progression might be deleterious. Elucidation of the mechanism of 3-MA inhibition may provide insight into the control of parasite growth.


Cellular Microbiology | 2009

Intracellular parasitism with Toxoplasma gondii stimulates mammalian-target-of-rapamycin-dependent host cell growth despite impaired signalling to S6K1 and 4E-BP1

Yubao Wang; Louis M. Weiss; Amos Orlofsky

The Ser/Thr kinase mammalian‐target‐of‐rapamycin (mTOR) is a central regulator of anabolism, growth and proliferation. We investigated the effects of Toxoplasma gondii on host mTOR signalling. Toxoplasma invasion of multiple cell types rapidly induced sustained mTOR activation that was restricted to infected cells, as determined by rapamycin‐sensitive phosphorylation of ribosomal protein S6; however, phosphorylation of the growth‐associated mTOR substrates 4E‐BP1 and S6K1 was not detected. Infected cells still phosphorylated S6K1 and 4E‐BP1 in response to insulin, although the S6K1 response was blunted. Parasite‐induced S6 phosphorylation was independent of S6K1 and did not require activation of canonical mTOR‐inducing pathways mediated by phosphatidylinositol 3‐kinase–Akt and ERK. Host mTOR was localized in a vesicular pattern surrounding the parasitophorous vacuole, suggesting potential activation by phosphatidic acid in the vacuolar membrane. In spite of a failure to phosphorylate 4E‐BP1 and S6K1, intracellular T. gondii triggered host cell cycle progression in an mTOR‐dependent manner and progression of infected cells displayed increased sensitivity to rapamycin. Moreover, normal cell growth was maintained during parasite‐induced cell cycle progression, as indicated by total cellular S6 levels. The Toxoplasma‐infected cell provides a unique example of non‐canonical mTOR activation supporting growth that is independent of signalling through either S6K1 or 4E‐BP1.

Collaboration


Dive into the Amos Orlofsky's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Louis M. Weiss

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar

Elaine Y. Lin

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Andrew V. Nguyen

City University of New York

View shared research outputs
Top Co-Authors

Avatar

Qiang Liu

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Juana Gonzalez

Albert Einstein College of Medicine

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge