Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amparo Latorre is active.

Publication


Featured researches published by Amparo Latorre.


Proceedings of the National Academy of Sciences of the United States of America | 2003

Reductive genome evolution in Buchnera aphidicola

Roeland C. H. J. van Ham; Judith Kamerbeek; Carmen Palacios; Carolina Rausell; Federico Abascal; Ugo Bastolla; José M. García Fernández; Luis Jiménez; Marina Postigo; Francisco J. Silva; Javier Tamames; Enrique Viguera; Amparo Latorre; Alfonso Valencia; Federico Morán; Andrés Moya

We have sequenced the genome of the intracellular symbiont Buchnera aphidicola from the aphid Baizongia pistacea. This strain diverged 80–150 million years ago from the common ancestor of two previously sequenced Buchnera strains. Here, a field-collected, nonclonal sample of insects was used as source material for laboratory procedures. As a consequence, the genome assembly unveiled intrapopulational variation, consisting of ≈1,200 polymorphic sites. Comparison of the 618-kb (kbp) genome with the two other Buchnera genomes revealed a nearly perfect gene-order conservation, indicating that the onset of genomic stasis coincided closely with establishment of the symbiosis with aphids, ≈200 million years ago. Extensive genome reduction also predates the synchronous diversification of Buchnera and its host; but, at a slower rate, gene loss continues among the extant lineages. A computational study of protein folding predicts that proteins in Buchnera, as well as proteins of other intracellular bacteria, are generally characterized by smaller folding efficiency compared with proteins of free living bacteria. These and other degenerative genomic features are discussed in light of compensatory processes and theoretical predictions on the long-term evolutionary fate of symbionts like Buchnera.


Nature Reviews Genetics | 2008

Learning how to live together: genomic insights into prokaryote-animal symbioses

Andrés Moya; Juli Peretó; Rosario Gil; Amparo Latorre

Our understanding of prokaryote–eukaryote symbioses as a source of evolutionary innovation has been rapidly increased by the advent of genomics, which has made possible the biological study of uncultivable endosymbionts. Genomics is allowing the dissection of the evolutionary process that starts with host invasion then progresses from facultative to obligate symbiosis and ends with replacement by, or coexistence with, new symbionts. Moreover, genomics has provided important clues on the mechanisms driving the genome-reduction process, the functions that are retained by the endosymbionts, the role of the host, and the factors that might determine whether the association will become parasitic or mutualistic.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The genome sequence of Blochmannia floridanus: Comparative analysis of reduced genomes

Rosario Gil; Francisco J. Silva; Evelyn Zientz; François Delmotte; Fernando González-Candelas; Amparo Latorre; Carolina Rausell; Judith Kamerbeek; Jürgen Gadau; Bert Hölldobler; Roeland C. H. J. van Ham; Roy Gross; Andrés Moya

Bacterial symbioses are widespread among insects, probably being one of the key factors of their evolutionary success. We present the complete genome sequence of Blochmannia floridanus, the primary endosymbiont of carpenter ants. Although these ants feed on a complex diet, this symbiosis very likely has a nutritional basis: Blochmannia is able to supply nitrogen and sulfur compounds to the host while it takes advantage of the host metabolic machinery. Remarkably, these bacteria lack all known genes involved in replication initiation (dnaA, priA, and recA). The phylogenetic analysis of a set of conserved protein-coding genes shows that Bl. floridanus is phylogenetically related to Buchnera aphidicola and Wigglesworthia glossinidia, the other endosymbiotic bacteria whose complete genomes have been sequenced so far. Comparative analysis of the five known genomes from insect endosymbiotic bacteria reveals they share only 313 genes, a number that may be close to the minimum gene set necessary to sustain endosymbiotic life.


Gut | 2013

Gut microbiota disturbance during antibiotic therapy: a multi-omic approach

Ana Elena Pérez-Cobas; María José Gosalbes; Anette K. Friedrichs; Henrik Knecht; Alejandro Artacho; Kathleen Eismann; Wolfgang Otto; David Rojo; Rafael Bargiela; Martin von Bergen; Sven C. Neulinger; Carolin Däumer; Femke-Anouska Heinsen; Amparo Latorre; Coral Barbas; Jana Seifert; Vitor A. P. Martins dos Santos; Stephan J. Ott; Manuel Ferrer; Andrés Moya

Objective Antibiotic (AB) usage strongly affects microbial intestinal metabolism and thereby impacts human health. Understanding this process and the underlying mechanisms remains a major research goal. Accordingly, we conducted the first comparative omic investigation of gut microbial communities in faecal samples taken at multiple time points from an individual subjected to β-lactam therapy. Methods The total (16S rDNA) and active (16S rRNA) microbiota, metagenome, metatranscriptome (mRNAs), metametabolome (high-performance liquid chromatography coupled to electrospray ionisation and quadrupole time-of-flight mass spectrometry) and metaproteome (ultra high performing liquid chromatography coupled to an Orbitrap MS2 instrument [UPLC-LTQ Orbitrap-MS/MS]) of a patient undergoing AB therapy for 14 days were evaluated. Results Apparently oscillatory population dynamics were observed, with an early reduction in Gram-negative organisms (day 6) and an overall collapse in diversity and possible further colonisation by ‘presumptive’ naturally resistant bacteria (day 11), followed by the re-growth of Gram-positive species (day 14). During this process, the maximum imbalance in the active microbial fraction occurred later (day 14) than the greatest change in the total microbial fraction, which reached a minimum biodiversity and richness on day 11; additionally, major metabolic changes occurred at day 6. Gut bacteria respond to ABs early by activating systems to avoid the antimicrobial effects of the drugs, while ‘presumptively’ attenuating their overall energetic metabolic status and the capacity to transport and metabolise bile acid, cholesterol, hormones and vitamins; host–microbial interactions significantly improved after treatment cessation. Conclusions This proof-of-concept study provides an extensive description of gut microbiota responses to follow-up β-lactam therapy. The results demonstrate that ABs targeting specific pathogenic infections and diseases may alter gut microbial ecology and interactions with host metabolism at a much higher level than previously assumed.


Molecular Ecology | 2003

Side-stepping secondary symbionts: widespread horizontal transfer across and beyond the Aphidoidea

Jacob A. Russell; Amparo Latorre; Beatriz Sabater-Muñoz; Andrés Moya; Nancy A. Moran

To elucidate the co‐evolutionary relationships between phloem‐feeding insects and their secondary, or facultative, bacterial symbionts, we explore the distributions of three such microbes — provisionally named the R‐type (or PASS, or S‐sym), T‐type (or PABS), and U‐type — across a number of aphid and psyllid hosts through the use of diagnostic molecular screening techniques and DNA sequencing. Although typically maternally transmitted, phylogenetic and pairwise divergence analyses reveal that these bacteria have been independently acquired by a variety of unrelated insect hosts, indicating that horizontal transfer has helped to shape their distributions. Based on the high genetic similarity between symbionts in different hosts, we argue that transfer events have occurred recently on an evolutionary timescale. In several instances, however, closely related symbionts associate with related hosts, suggesting that horizontal transfer between distant relatives may be rarer than transmission between close relatives. Our findings on the prevalence of these symbionts within many aphid taxa, along with published observations concerning their effects on host fitness, imply a significant role of facultative symbiosis in aphid ecology and evolution.


Genome Biology | 2010

Immunity and other defenses in pea aphids, Acyrthosiphon pisum

Nicole M. Gerardo; Boran Altincicek; Caroline Anselme; Hagop S. Atamian; Seth M. Barribeau; Martin de Vos; Elizabeth J. Duncan; Jay D. Evans; Toni Gabaldón; Murad Ghanim; Adelaziz Heddi; Isgouhi Kaloshian; Amparo Latorre; Andrés Moya; Atsushi Nakabachi; Benjamin J. Parker; Vincente Pérez-Brocal; Miguel Pignatelli; Yvan Rahbé; John S Ramsey; Chelsea J. Spragg; Javier Tamames; Daniel Tamarit; Cecilia Tamborindeguy; Caroline Vincent-Monegat; Andreas Vilcinskas

BackgroundRecent genomic analyses of arthropod defense mechanisms suggest conservation of key elements underlying responses to pathogens, parasites and stresses. At the center of pathogen-induced immune responses are signaling pathways triggered by the recognition of fungal, bacterial and viral signatures. These pathways result in the production of response molecules, such as antimicrobial peptides and lysozymes, which degrade or destroy invaders. Using the recently sequenced genome of the pea aphid (Acyrthosiphon pisum), we conducted the first extensive annotation of the immune and stress gene repertoire of a hemipterous insect, which is phylogenetically distantly related to previously characterized insects models.ResultsStrikingly, pea aphids appear to be missing genes present in insect genomes characterized to date and thought critical for recognition, signaling and killing of microbes. In line with results of gene annotation, experimental analyses designed to characterize immune response through the isolation of RNA transcripts and proteins from immune-challenged pea aphids uncovered few immune-related products. Gene expression studies, however, indicated some expression of immune and stress-related genes.ConclusionsThe absence of genes suspected to be essential for the insect immune response suggests that the traditional view of insect immunity may not be as broadly applicable as once thought. The limitations of the aphid immune system may be representative of a broad range of insects, or may be aphid specific. We suggest that several aspects of the aphid life style, such as their association with microbial symbionts, could facilitate survival without strong immune protection.


PLOS ONE | 2011

Metatranscriptomic Approach to Analyze the Functional Human Gut Microbiota

María José Gosalbes; Ana Durbán; Miguel Pignatelli; Juan J. Abellán; Nuria Jiménez-Hernández; Ana Elena Pérez-Cobas; Amparo Latorre; Andrés Moya

The human gut is the natural habitat for a large and dynamic bacterial community that has a great relevance for health. Metagenomics is increasing our knowledge of gene content as well as of functional and genetic variability in this microbiome. However, little is known about the active bacteria and their function(s) in the gastrointestinal tract. We performed a metatranscriptomic study on ten healthy volunteers to elucidate the active members of the gut microbiome and their functionality under conditions of health. First, the microbial cDNAs obtained from each sample were sequenced using 454 technology. The analysis of 16S transcripts showed the phylogenetic structure of the active microbial community. Lachnospiraceae, Ruminococcaceae, Bacteroidaceae, Prevotellaceae, and Rickenellaceae were the predominant families detected in the active microbiota. The characterization of mRNAs revealed a uniform functional pattern in healthy individuals. The main functional roles of the gut microbiota were carbohydrate metabolism, energy production and synthesis of cellular components. In contrast, housekeeping activities such as amino acid and lipid metabolism were underrepresented in the metatranscriptome. Our results provide new insights into the functionality of the complex gut microbiota in healthy individuals. In this RNA-based survey, we also detected small RNAs, which are important regulatory elements in prokaryotic physiology and pathogenicity.


Proceedings of the National Academy of Sciences of the United States of America | 2002

Extreme genome reduction in Buchnera spp.: Toward the minimal genome needed for symbiotic life

Rosario Gil; Beatriz Sabater-Muñoz; Amparo Latorre; Francisco J. Silva; Andrés Moya

Buchnera is a mutualistic intracellular symbiont of aphids. Their association began about 200 million years ago, with host and symbiont lineages evolving in parallel since that time. During this coevolutionary process, Buchnera has experienced a dramatic decrease of genome size, retaining only essential genes for its specialized lifestyle. Previous studies reported that genome size in Buchnera spp. is very uniform, suggesting that genome shrinkage occurred early in evolution, and that modern lineages retain the genome size of a common ancestor. Our physical mapping of Buchnera genomes obtained from five aphid lineages shows that the genome size is not conserved among them, but has been reduced down to 450 kb in some species. Here we show evidence of six species with a genome size smaller than Mycoplasma genitalium, the smallest bacterial genome reported thus far (580 kb). Our findings strongly suggest that the Buchnera genome is still experiencing a reductive process toward a minimum set of genes necessary for its symbiotic lifestyle.


Nucleic Acids Research | 2011

The Gypsy Database (GyDB) of mobile genetic elements: release 2.0

Carlos Llorens; Ricardo Futami; Laura Covelli; Laura Domínguez-Escribá; Jose M. Viu; Daniel Tamarit; José Aguilar-Rodríguez; Miguel Vicente-Ripolles; Gonzalo Fuster; Guillermo P. Bernet; Florian Maumus; Alfonso Muñoz-Pomer; José M. Sempere; Amparo Latorre; Andrés Moya

This article introduces the second release of the Gypsy Database of Mobile Genetic Elements (GyDB 2.0): a research project devoted to the evolutionary dynamics of viruses and transposable elements based on their phylogenetic classification (per lineage and protein domain). The Gypsy Database (GyDB) is a long-term project that is continuously progressing, and that owing to the high molecular diversity of mobile elements requires to be completed in several stages. GyDB 2.0 has been powered with a wiki to allow other researchers participate in the project. The current database stage and scope are long terminal repeats (LTR) retroelements and relatives. GyDB 2.0 is an update based on the analysis of Ty3/Gypsy, Retroviridae, Ty1/Copia and Bel/Pao LTR retroelements and the Caulimoviridae pararetroviruses of plants. Among other features, in terms of the aforementioned topics, this update adds: (i) a variety of descriptions and reviews distributed in multiple web pages; (ii) protein-based phylogenies, where phylogenetic levels are assigned to distinct classified elements; (iii) a collection of multiple alignments, lineage-specific hidden Markov models and consensus sequences, called GyDB collection; (iv) updated RefSeq databases and BLAST and HMM servers to facilitate sequence characterization of new LTR retroelement and caulimovirus queries; and (v) a bibliographic server. GyDB 2.0 is available at http://gydb.org.


Trends in Genetics | 2001

Genome size reduction through multiple events of gene disintegration in Buchnera APS.

Francisco J. Silva; Amparo Latorre; Andrés Moya

The evolution of the endosymbiont Buchnera during its adaptation to intracellular life involved a massive reduction in its genome. By comparing the orthologous genes of Buchnera, Escherichia coli and Vibrio cholerae, we show that the minimal genome size of Buchnera arose from multiple events of gene disintegration dispersed over the whole genome. The elimination of the genes was a continuous process that began with gene inactivation and progressed until the DNA corresponding to the pseudogenes were completely deleted.

Collaboration


Dive into the Amparo Latorre's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rosario Gil

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge