Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Juli Peretó is active.

Publication


Featured researches published by Juli Peretó.


Microbiology and Molecular Biology Reviews | 2004

Determination of the Core of a Minimal Bacterial Gene Set

Rosario Gil; Francisco J. Silva; Juli Peretó; Andrés Moya

SUMMARY The availability of a large number of complete genome sequences raises the question of how many genes are essential for cellular life. Trying to reconstruct the core of the protein-coding gene set for a hypothetical minimal bacterial cell, we have performed a computational comparative analysis of eight bacterial genomes. Six of the analyzed genomes are very small due to a dramatic genome size reduction process, while the other two, corresponding to free-living relatives, are larger. The available data from several systematic experimental approaches to define all the essential genes in some completely sequenced bacterial genomes were also considered, and a reconstruction of a minimal metabolic machinery necessary to sustain life was carried out. The proposed minimal genome contains 206 protein-coding genes with all the genetic information necessary for self-maintenance and reproduction in the presence of a full complement of essential nutrients and in the absence of environmental stress. The main features of such a minimal gene set, as well as the metabolic functions that must be present in the hypothetical minimal cell, are discussed.


Nature Reviews Genetics | 2008

Learning how to live together: genomic insights into prokaryote-animal symbioses

Andrés Moya; Juli Peretó; Rosario Gil; Amparo Latorre

Our understanding of prokaryote–eukaryote symbioses as a source of evolutionary innovation has been rapidly increased by the advent of genomics, which has made possible the biological study of uncultivable endosymbionts. Genomics is allowing the dissection of the evolutionary process that starts with host invasion then progresses from facultative to obligate symbiosis and ends with replacement by, or coexistence with, new symbionts. Moreover, genomics has provided important clues on the mechanisms driving the genome-reduction process, the functions that are retained by the endosymbionts, the role of the host, and the factors that might determine whether the association will become parasitic or mutualistic.


PLOS Genetics | 2011

Serratia symbiotica from the Aphid Cinara cedri: A Missing Link from Facultative to Obligate Insect Endosymbiont

Araceli Lamelas; María José Gosalbes; Alejandro Manzano-Marín; Juli Peretó; Andrés Moya; Amparo Latorre

The genome sequencing of Buchnera aphidicola BCc from the aphid Cinara cedri, which is the smallest known Buchnera genome, revealed that this bacterium had lost its symbiotic role, as it was not able to synthesize tryptophan and riboflavin. Moreover, the biosynthesis of tryptophan is shared with the endosymbiont Serratia symbiotica SCc, which coexists with B. aphidicola in this aphid. The whole-genome sequencing of S. symbiotica SCc reveals an endosymbiont in a stage of genome reduction that is closer to an obligate endosymbiont, such as B. aphidicola from Acyrthosiphon pisum, than to another S. symbiotica, which is a facultative endosymbiont in this aphid, and presents much less gene decay. The comparison between both S. symbiotica enables us to propose an evolutionary scenario of the transition from facultative to obligate endosymbiont. Metabolic inferences of B. aphidicola BCc and S. symbiotica SCc reveal that most of the functions carried out by B. aphidicola in A. pisum are now either conserved in B. aphidicola BCc or taken over by S. symbiotica. In addition, there are several cases of metabolic complementation giving functional stability to the whole consortium and evolutionary preservation of the actors involved.


BMC Evolutionary Biology | 2007

The frontier between cell and organelle: genome analysis of Candidatus Carsonella ruddii

Javier Tamames; Rosario Gil; Amparo Latorre; Juli Peretó; Francisco J. Silva; Andrés Moya

BackgroundBacterial symbioses are widespread among insects. The early establishment of such symbiotic associations has probably been one of the key factors for the evolutionary success of insects, since it may have allowed access to novel ecological niches and to new imbalanced food resources, such as plant sap or blood. Several genomes of bacterial endosymbionts of different insect species have been recently sequenced, and their biology has been extensively studied. Recently, the complete genome sequence of Candidatus Carsonella ruddii, considered the primary endosymbiont of the psyllid Pachpsylla venusta, has been published. This genome consists of a circular chromosome of 159,662 bp and has been proposed as the smallest bacterial endosymbiont genome known to date.ResultsThe detailed analysis of the gene content of C. ruddii shows that the extensive degradation of the genome is not compatible with its consideration as a mutualistic endosymbiont and, even more, as a living organism. The ability to perform most essential functions for a cell to be considered alive is heavily impaired by the lack of genes involved in DNA replication, transcription and translation. Furthermore, the shortening of genes causes, in some cases, the loss of essential domains and functional residues needed to fulfill such vital functions. In addition, at least half of the pathways towards the biosynthesis of essential amino acids, its proposed symbiotic function, are completely or partially lost.ConclusionWe propose that this strain of C. ruddii can be viewed as a further step towards the degeneration of the former primary endosymbiont and its transformation in a subcellular new entity between living cells and organelles. Although the transition of genes from C. ruddii to the host nucleus has been proposed, the amount of genes that should have been transferred to the germinal line of the insect would be so big that it would be more plausible to consider the implication of the mitochondrial machinery encoded in the insect nucleus. Furthermore, since most genes for the biosynthesis of essential amino acids have also been lost, it is likely that the host depends on another yet unidentified symbiont to complement its deficient diet.


Molecular Biology and Evolution | 2011

Phylogenomic evidence for the presence of a flagellum and cbb3 oxidase in the free-living mitochondrial ancestor

Davide Sassera; Nathan Lo; Sara Epis; Giuseppe D'Auria; Matteo Montagna; Francesco Comandatore; David S. Horner; Juli Peretó; Alberto M. Luciano; Federica Franciosi; Emanuele Ferri; Elena Crotti; Chiara Bazzocchi; Daniele Daffonchio; Luciano Sacchi; Andrés Moya; Amparo Latorre; Claudio Bandi

The initiation of the intracellular symbiosis that would give rise to mitochondria and eukaryotes was a major event in the history of life on earth. Hypotheses to explain eukaryogenesis fall into two broad and competing categories: those proposing that the host was a phagocytotic proto-eukaryote that preyed upon the free-living mitochondrial ancestor (hereafter FMA), and those proposing that the host was an archaebacterium that engaged in syntrophy with the FMA. Of key importance to these hypotheses are whether the FMA was motile or nonmotile, and the atmospheric conditions under which the FMA thrived. Reconstructions of the FMA based on genome content of Rickettsiales representatives-generally considered to be the closest living relatives of mitochondria-indicate that it was nonmotile and aerobic. We have sequenced the genome of Candidatus Midichloria mitochondrii, a novel and phylogenetically divergent member of the Rickettsiales. We found that it possesses unique gene sets found in no other Rickettsiales, including 26 genes associated with flagellar assembly, and a cbb(3)-type cytochrome oxidase. Phylogenomic analyses show that these genes were inherited in a vertical fashion from an ancestral α-proteobacterium, and indicate that the FMA possessed a flagellum, and could undergo oxidative phosphorylation under both aerobic and microoxic conditions. These results indicate that the FMA played a more active and potentially parasitic role in eukaryogenesis than currently appreciated and provide an explanation for how the symbiosis could have evolved under low levels of oxygen.


Philosophical Transactions of the Royal Society B | 2007

Structural analyses of a hypothetical minimal metabolism

Toni Gabaldón; Juli Peretó; Francisco Montero; Rosario Gil; Amparo Latorre; Andrés Moya

By integrating data from comparative genomics and large-scale deletion studies, we previously proposed a minimal gene set comprising 206 protein-coding genes. To evaluate the consistency of the metabolism encoded by such a minimal genome, we have carried out a series of computational analyses. Firstly, the topology of the minimal metabolism was compared with that of the reconstructed networks from natural bacterial genomes. Secondly, the robustness of the metabolic network was evaluated by simulated mutagenesis and, finally, the stoichiometric consistency was assessed by automatically deriving the steady-state solutions from the reaction set. The results indicated that the proposed minimal metabolism presents stoichiometric consistency and that it is organized as a complex power-law network with topological parameters falling within the expected range for a natural metabolism of its size. The robustness analyses revealed that most random mutations do not alter the topology of the network significantly, but do cause significant damage by preventing the synthesis of several compounds or compromising the stoichiometric consistency of the metabolism. The implications that these results have on the origins of metabolic complexity and the theoretical design of an artificial minimal cell are discussed.


PLOS ONE | 2011

Microbial Diversity in the Midguts of Field and Lab-Reared Populations of the European Corn Borer Ostrinia nubilalis

Eugeni Belda; Laia Pedrola; Juli Peretó; Juan F. Martinez-Blanch; Arnau Montagud; Emilio Navarro; J.F. Urchueguía; Daniel Ramón; Andrés Moya; Manuel Porcar

Background Insects are associated with microorganisms that contribute to the digestion and processing of nutrients. The European Corn Borer (ECB) is a moth present world-wide, causing severe economical damage as a pest on corn and other crops. In the present work, we give a detailed view of the complexity of the microorganisms forming the ECB midgut microbiota with the objective of comparing the biodiversity of the midgut-associated microbiota and explore their potential as a source of genes and enzymes with biotechnological applications. Methodological/Principal Findings A high-throughput sequencing approach has been used to identify bacterial species, genes and metabolic pathways, particularly those involved in plant-matter degradation, in two different ECB populations (field-collected vs. lab-reared population with artificial diet). Analysis of the resulting sequences revealed the massive presence of Staphylococcus warneri and Weissella paramesenteroides in the lab-reared sample. This enabled us to reconstruct both genomes almost completely. Despite the apparently low diversity, 208 different genera were detected in the sample, although most of them at very low frequency. By contrast, the natural population exhibited an even higher taxonomic diversity along with a wider array of cellulolytic enzyme families. However, in spite of the differences in relative abundance of major taxonomic groups, not only did both metagenomes share a similar functional profile but also a similar distribution of non-redundant genes in different functional categories. Conclusions/Significance Our results reveal a highly diverse pool of bacterial species in both O. nubilalis populations, with major differences: The lab-reared sample is rich in gram-positive species (two of which have almost fully sequenced genomes) while the field sample harbors mainly gram-negative species and has a larger set of cellulolytic enzymes. We have found a clear relationship between the diet and the midgut microbiota, which reveals the selection pressure of food on the community of intestinal bacteria.


Genome Biology and Evolution | 2013

Comparative Genomics of Blattabacterium cuenoti: The Frozen Legacy of an Ancient Endosymbiont Genome

Rafael Patiño-Navarrete; Andrés Moya; Amparo Latorre; Juli Peretó

Many insect species have established long-term symbiotic relationships with intracellular bacteria. Symbiosis with bacteria has provided insects with novel ecological capabilities, which have allowed them colonize previously unexplored niches. Despite its importance to the understanding of the emergence of biological complexity, the evolution of symbiotic relationships remains hitherto a mystery in evolutionary biology. In this study, we contribute to the investigation of the evolutionary leaps enabled by mutualistic symbioses by sequencing the genome of Blattabacterium cuenoti, primary endosymbiont of the omnivorous cockroach Blatta orientalis, and one of the most ancient symbiotic associations. We perform comparative analyses between the Blattabacterium cuenoti genome and that of previously sequenced endosymbionts, namely those from the omnivorous hosts the Blattella germanica (Blattelidae) and Periplaneta americana (Blattidae), and the endosymbionts harbored by two wood-feeding hosts, the subsocial cockroach Cryptocercus punctulatus (Cryptocercidae) and the termite Mastotermes darwiniensis (Termitidae). Our study shows a remarkable evolutionary stasis of this symbiotic system throughout the evolutionary history of cockroaches and the deepest branching termite M. darwiniensis, in terms of not only chromosome architecture but also gene content, as revealed by the striking conservation of the Blattabacterium core genome. Importantly, the architecture of central metabolic network inferred from the endosymbiont genomes was established very early in Blattabacterium evolutionary history and could be an outcome of the essential role played by this endosymbiont in the host’s nitrogen economy.


Journal of Molecular Evolution | 2005

Phylogenetic Analysis of Eukaryotic Thiolases Suggests Multiple Proteobacterial Origins

Juli Peretó; Purificación López-García; David Moreira

Eukaryotic thiolases are essential enzymes located in three different compartments (peroxisome, mitochondrion, and cytosol) that can display catabolic or anabolic functions. They are responsible for the thiolytic cleavage of oxidized acyl-CoA (thiolase I; EC 2.3.1.16) and the synthesis or degradation of acetoacetyl-CoA (thiolase II; EC 2.3.1.9). Phylogenetic analysis of eukaryotic thiolase sequences showed that they form six distinct clusters, one of them highly divergent, which are in good correlation with their class and subcellular location. When analyzed together with a representative sample of prokaryotic thiolases, all eukaryotic thiolase groups emerged close to proteobacterial sequences. Metazoan cytosolic thiolase II was related to α-proteobacterial sequences, suggesting a mitochondrial origin. Unexpectedly, cytosolic thiolases from green plants and fungi as well as at least one member of all eukaryotic peroxisomal and mitochondrial thiolases had δ-proteobacteria as closest relatives. Our analysis suggests that these eukaryotic peroxisomal and mitochondrial thiolases may have been acquired from δ-proteobacteria prior to the ancestor of all known eukaryotes.


BMC Microbiology | 2012

Metabolic stasis in an ancient symbiosis: genome-scale metabolic networks from two Blattabacterium cuenoti strains, primary endosymbionts of cockroaches

Carmen M. González-Domenech; Eugeni Belda; Rafael Patiño-Navarrete; Andrés Moya; Juli Peretó; Amparo Latorre

BackgroundCockroaches are terrestrial insects that strikingly eliminate waste nitrogen as ammonia instead of uric acid. Blattabacterium cuenoti (Mercier 1906) strains Bge and Pam are the obligate primary endosymbionts of the cockroaches Blattella germanica and Periplaneta americana, respectively. The genomes of both bacterial endosymbionts have recently been sequenced, making possible a genome-scale constraint-based reconstruction of their metabolic networks. The mathematical expression of a metabolic network and the subsequent quantitative studies of phenotypic features by Flux Balance Analysis (FBA) represent an efficient functional approach to these uncultivable bacteria.ResultsWe report the metabolic models of Blattabacterium strains Bge (iCG238) and Pam (iCG230), comprising 296 and 289 biochemical reactions, associated with 238 and 230 genes, and 364 and 358 metabolites, respectively. Both models reflect both the striking similarities and the singularities of these microorganisms. FBA was used to analyze the properties, potential and limits of the models, assuming some environmental constraints such as aerobic conditions and the net production of ammonia from these bacterial systems, as has been experimentally observed. In addition, in silico simulations with the iCG238 model have enabled a set of carbon and nitrogen sources to be defined, which would also support a viable phenotype in terms of biomass production in the strain Pam, which lacks the first three steps of the tricarboxylic acid cycle. FBA reveals a metabolic condition that renders these enzymatic steps dispensable, thus offering a possible evolutionary explanation for their elimination. We also confirm, by computational simulations, the fragility of the metabolic networks and their host dependence.ConclusionsThe minimized Blattabacterium metabolic networks are surprisingly similar in strains Bge and Pam, after 140 million years of evolution of these endosymbionts in separate cockroach lineages. FBA performed on the reconstructed networks from the two bacteria helps to refine the functional analysis of the genomes enabling us to postulate how slightly different host metabolic contexts drove their parallel evolution.

Collaboration


Dive into the Juli Peretó's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Antonio Lazcano

National Autonomous University of Mexico

View shared research outputs
Top Co-Authors

Avatar

Rosario Gil

University of Valencia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Francisco Montero

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Miguel Ponce-de-Leon

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Alvaro Moreno

University of the Basque Country

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge