Amr Amin
United Arab Emirates University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amr Amin.
Seminars in Cancer Biology | 2015
Zongwei Wang; Charlotta Dabrosin; Xin Yin; Mark M. Fuster; Alexandra Arreola; W.Kimryn Rathmell; Daniele Generali; Ganji Purnachandra Nagaraju; Bassel F. El-Rayes; Domenico Ribatti; Yi Charlie Chen; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Somaira Nowsheen; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Bill Helferich; Xujuan Yang; Gunjan Guha; Dipita Bhakta; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Dorota Halicka; Sulma I. Mohammed; Asfar S. Azmi; Alan Bilsland
Deregulation of angiogenesis – the growth of new blood vessels from an existing vasculature – is a main driving force in many severe human diseases including cancer. As such, tumor angiogenesis is important for delivering oxygen and nutrients to growing tumors, and therefore considered an essential pathologic feature of cancer, while also playing a key role in enabling other aspects of tumor pathology such as metabolic deregulation and tumor dissemination/metastasis. Recently, inhibition of tumor angiogenesis has become a clinical anti-cancer strategy in line with chemotherapy, radiotherapy and surgery, which underscore the critical importance of the angiogenic switch during early tumor development. Unfortunately the clinically approved anti-angiogenic drugs in use today are only effective in a subset of the patients, and many who initially respond develop resistance over time. Also, some of the anti-angiogenic drugs are toxic and it would be of great importance to identify alternative compounds, which could overcome these drawbacks and limitations of the currently available therapy. Finding “the most important target” may, however, prove a very challenging approach as the tumor environment is highly diverse, consisting of many different cell types, all of which may contribute to tumor angiogenesis. Furthermore, the tumor cells themselves are genetically unstable, leading to a progressive increase in the number of different angiogenic factors produced as the cancer progresses to advanced stages. As an alternative approach to targeted therapy, options to broadly interfere with angiogenic signals by a mixture of non-toxic natural compound with pleiotropic actions were viewed by this team as an opportunity to develop a complementary anti-angiogenesis treatment option. As a part of the “Halifax Project” within the “Getting to know cancer” framework, we have here, based on a thorough review of the literature, identified 10 important aspects of tumor angiogenesis and the pathological tumor vasculature which would be well suited as targets for anti-angiogenic therapy: (1) endothelial cell migration/tip cell formation, (2) structural abnormalities of tumor vessels, (3) hypoxia, (4) lymphangiogenesis, (5) elevated interstitial fluid pressure, (6) poor perfusion, (7) disrupted circadian rhythms, (8) tumor promoting inflammation, (9) tumor promoting fibroblasts and (10) tumor cell metabolism/acidosis. Following this analysis, we scrutinized the available literature on broadly acting anti-angiogenic natural products, with a focus on finding qualitative information on phytochemicals which could inhibit these targets and came up with 10 prototypical phytochemical compounds: (1) oleanolic acid, (2) tripterine, (3) silibinin, (4) curcumin, (5) epigallocatechin-gallate, (6) kaempferol, (7) melatonin, (8) enterolactone, (9) withaferin A and (10) resveratrol. We suggest that these plant-derived compounds could be combined to constitute a broader acting and more effective inhibitory cocktail at doses that would not be likely to cause excessive toxicity. All the targets and phytochemical approaches were further cross-validated against their effects on other essential tumorigenic pathways (based on the “hallmarks” of cancer) in order to discover possible synergies or potentially harmful interactions, and were found to generally also have positive involvement in/effects on these other aspects of tumor biology. The aim is that this discussion could lead to the selection of combinations of such anti-angiogenic compounds which could be used in potent anti-tumor cocktails, for enhanced therapeutic efficacy, reduced toxicity and circumvention of single-agent anti-angiogenic resistance, as well as for possible use in primary or secondary cancer prevention strategies.
Seminars in Cancer Biology | 2015
Ramzi M. Mohammad; Irfana Muqbil; Leroy Lowe; Clement Yedjou; Hsue Yin Hsu; Liang Tzung Lin; Markus D. Siegelin; Carmela Fimognari; Nagi B. Kumar; Q. Ping Dou; Huanjie Yang; Abbas K. Samadi; Gian Luigi Russo; Carmela Spagnuolo; Swapan K. Ray; Mrinmay Chakrabarti; James D. Morre; Helen M. Coley; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Dipita Bhakta
Apoptosis or programmed cell death is natural way of removing aged cells from the body. Most of the anti-cancer therapies trigger apoptosis induction and related cell death networks to eliminate malignant cells. However, in cancer, de-regulated apoptotic signaling, particularly the activation of an anti-apoptotic systems, allows cancer cells to escape this program leading to uncontrolled proliferation resulting in tumor survival, therapeutic resistance and recurrence of cancer. This resistance is a complicated phenomenon that emanates from the interactions of various molecules and signaling pathways. In this comprehensive review we discuss the various factors contributing to apoptosis resistance in cancers. The key resistance targets that are discussed include (1) Bcl-2 and Mcl-1 proteins; (2) autophagy processes; (3) necrosis and necroptosis; (4) heat shock protein signaling; (5) the proteasome pathway; (6) epigenetic mechanisms; and (7) aberrant nuclear export signaling. The shortcomings of current therapeutic modalities are highlighted and a broad spectrum strategy using approaches including (a) gossypol; (b) epigallocatechin-3-gallate; (c) UMI-77 (d) triptolide and (e) selinexor that can be used to overcome cell death resistance is presented. This review provides a roadmap for the design of successful anti-cancer strategies that overcome resistance to apoptosis for better therapeutic outcome in patients with cancer.
Seminars in Cancer Biology | 2015
Wen Guo Jiang; Andrew James Sanders; M. Katoh; Hendrik Ungefroren; Frank Gieseler; Mark E. Prince; Sarah K. Thompson; Massimo Zollo; D. Spano; Punita Dhawan; Daniel Sliva; Pochi R. Subbarayan; Malancha Sarkar; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Lin Ye; William G. Helferich; Xujuan Yang; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Asfar S. Azmi; W. N. Keith
Cancer is a key health issue across the world, causing substantial patient morbidity and mortality. Patient prognosis is tightly linked with metastatic dissemination of the disease to distant sites, with metastatic diseases accounting for a vast percentage of cancer patient mortality. While advances in this area have been made, the process of cancer metastasis and the factors governing cancer spread and establishment at secondary locations is still poorly understood. The current article summarizes recent progress in this area of research, both in the understanding of the underlying biological processes and in the therapeutic strategies for the management of metastasis. This review lists the disruption of E-cadherin and tight junctions, key signaling pathways, including urokinase type plasminogen activator (uPA), phosphatidylinositol 3-kinase/v-akt murine thymoma viral oncogene (PI3K/AKT), focal adhesion kinase (FAK), β-catenin/zinc finger E-box binding homeobox 1 (ZEB-1) and transforming growth factor beta (TGF-β), together with inactivation of activator protein-1 (AP-1) and suppression of matrix metalloproteinase-9 (MMP-9) activity as key targets and the use of phytochemicals, or natural products, such as those from Agaricus blazei, Albatrellus confluens, Cordyceps militaris, Ganoderma lucidum, Poria cocos and Silybum marianum, together with diet derived fatty acids gamma linolenic acid (GLA) and eicosapentanoic acid (EPA) and inhibitory compounds as useful approaches to target tissue invasion and metastasis as well as other hallmark areas of cancer. Together, these strategies could represent new, inexpensive, low toxicity strategies to aid in the management of cancer metastasis as well as having holistic effects against other cancer hallmarks.
Hepatology | 2011
Amr Amin; Alaaeldin A. Hamza; Khuloud Bajbouj; S. Salman Ashraf; Sayel Daoud
Saffron has been proposed as a promising candidate for cancer chemoprevention. The purpose of this investigation was to investigate the chemopreventive action and the possible mechanisms of saffron against diethylnitrosamine (DEN)‐induced liver cancer in rats. Administration of saffron at doses of 75, 150, and 300 mg/kg/day was started 2 weeks prior to the DEN injection and was continued for 22 weeks. Saffron significantly reduced the DEN‐induced increase in the number and the incidence of hepatic dyschromatic nodules. Saffron also decreased the number and the area of placental glutathione S‐transferase–positive foci in livers of DEN‐treated rats. Furthermore, saffron counteracted DEN‐induced oxidative stress in rats as assessed by restoration of superoxide dismutase, catalase, and glutathione‐S‐transferase levels and diminishing of myeloperoxidase activity, malondialdehyde and protein carbonyl formation in liver. The results of immunohistochemical staining of rat liver showed that saffron inhibited the DEN‐mediated elevations in numbers of cells positive for Ki‐67, cyclooxygenase 2, inducible nitric oxide synthase, nuclear factor‐kappa B p‐65, and phosphorylated tumor necrosis factor receptor. Saffron also blocked the depletion in the number of cells positive for TUNEL (terminal deoxynucleotidyl transferase–mediated deoxyuridine triphosphate nick‐end labeling) and M30 CytoDeath in liver tissues of DEN‐treated rats. In vitro experiments carried out using HepG2 cells also confirmed these findings and showed inhibition of nuclear factor‐kappa B activation, increased cleavage of caspase‐3, as well as DNA damage and cell cycle arrest upon saffron treatment. Conclusion: This study provides evidence that saffron exerts a significant chemopreventive effect against liver cancer through inhibition of cell proliferation and induction of apoptosis. This report also shows some evidence that saffron protects rat liver from cancer via modulating oxidative damage and suppressing inflammatory response. (HEPATOLOGY 2011;)
Seminars in Cancer Biology | 2015
Lynnette R. Ferguson; Helen Chen; Andrew R. Collins; Marisa Connell; Giovanna Damia; Santanu Dasgupta; Meenakshi Malhotra; Alan K. Meeker; Amedeo Amedei; Amr Amin; S. Salman Ashraf; Katia Aquilano; Asfar S. Azmi; Dipita Bhakta; Alan Bilsland; Chandra S. Boosani; Sophie Chen; Maria Rosa Ciriolo; Hiromasa Fujii; Gunjan Guha; Dorota Halicka; William G. Helferich; W. Nicol Keith; Sulma I. Mohammed; Elena Niccolai; Xujuan Yang; Kanya Honoki; Virginia R. Parslow; Satya Prakash; Sarallah Rezazadeh
Genomic instability can initiate cancer, augment progression, and influence the overall prognosis of the affected patient. Genomic instability arises from many different pathways, such as telomere damage, centrosome amplification, epigenetic modifications, and DNA damage from endogenous and exogenous sources, and can be perpetuating, or limiting, through the induction of mutations or aneuploidy, both enabling and catastrophic. Many cancer treatments induce DNA damage to impair cell division on a global scale but it is accepted that personalized treatments, those that are tailored to the particular patient and type of cancer, must also be developed. In this review, we detail the mechanisms from which genomic instability arises and can lead to cancer, as well as treatments and measures that prevent genomic instability or take advantage of the cellular defects caused by genomic instability. In particular, we identify and discuss five priority targets against genomic instability: (1) prevention of DNA damage; (2) enhancement of DNA repair; (3) targeting deficient DNA repair; (4) impairing centrosome clustering; and, (5) inhibition of telomerase activity. Moreover, we highlight vitamin D and B, selenium, carotenoids, PARP inhibitors, resveratrol, and isothiocyanates as priority approaches against genomic instability. The prioritized target sites and approaches were cross validated to identify potential synergistic effects on a number of important areas of cancer biology.
Seminars in Cancer Biology | 2015
Mark A. Feitelson; Alla Arzumanyan; Rob J. Kulathinal; Stacy W. Blain; Randall F. Holcombe; Jamal Mahajna; Maria Marino; Maria L. Martinez-Chantar; Roman Nawroth; Isidro Sánchez-García; Dipali Sharma; Neeraj K. Saxena; Neetu Singh; Panagiotis J. Vlachostergios; Shanchun Guo; Kanya Honoki; Hiromasa Fujii; Alexandros G. Georgakilas; Alan Bilsland; Amedeo Amedei; Elena Niccolai; Amr Amin; S. Salman Ashraf; Chandra S. Boosani; Gunjan Guha; Maria Rosa Ciriolo; Katia Aquilano; Sophie Chen; Sulma I. Mohammed; Asfar S. Azmi
Proliferation is an important part of cancer development and progression. This is manifest by altered expression and/or activity of cell cycle related proteins. Constitutive activation of many signal transduction pathways also stimulates cell growth. Early steps in tumor development are associated with a fibrogenic response and the development of a hypoxic environment which favors the survival and proliferation of cancer stem cells. Part of the survival strategy of cancer stem cells may manifested by alterations in cell metabolism. Once tumors appear, growth and metastasis may be supported by overproduction of appropriate hormones (in hormonally dependent cancers), by promoting angiogenesis, by undergoing epithelial to mesenchymal transition, by triggering autophagy, and by taking cues from surrounding stromal cells. A number of natural compounds (e.g., curcumin, resveratrol, indole-3-carbinol, brassinin, sulforaphane, epigallocatechin-3-gallate, genistein, ellagitannins, lycopene and quercetin) have been found to inhibit one or more pathways that contribute to proliferation (e.g., hypoxia inducible factor 1, nuclear factor kappa B, phosphoinositide 3 kinase/Akt, insulin-like growth factor receptor 1, Wnt, cell cycle associated proteins, as well as androgen and estrogen receptor signaling). These data, in combination with bioinformatics analyses, will be very important for identifying signaling pathways and molecular targets that may provide early diagnostic markers and/or critical targets for the development of new drugs or drug combinations that block tumor formation and progression.
Annals of the New York Academy of Sciences | 2006
Amr Amin; Mohamed Lotfy; Mohamed Shafiullah; Ernest Adeghate
Abstract: Tribulus terrestris L (TT) is used in the Arabic folk medicine to treat various diseases. The aim of this article was to investigate the protective effects of TT in diabetes mellitus (DM). Diabetes is known to increase reactive oxygen species (ROS) level that subsequently contributes to the pathogenesis of diabetes. Rats were divided into six groups and treated with either saline, glibenclamide (Glib), or TT for 30 days. Rats in group 1 were given saline after the onset of streptozotocin (STZ)‐induced diabetes; the second diabetic group was administered Glib (10 mg/kg body weight). The third diabetic group was treated with the TT extract (2 g/kg body weight), while the first, second, and third nondiabetic groups were treated with saline solution, Glib, and TT extract, respectively. At the end of the experiment, serum and liver samples were collected for biochemical and morphological analysis. Levels of serum alanine aminotransferase (ALT) and creatinine were estimated. In addition, levels of malondialdehyde (MDA) and reduced glutathione (GSH) were assayed in the liver. The tested TT extract significantly decreased the levels of ALT and creatinine in the serum (P < 0.05) in diabetic groups and lowered the MDA level in liver (P < 0.05) in diabetic and (P < 0.01) nondiabetic groups. On the other hand, levels of reduced GSH in liver were significantly increased (P < 0.01) in diabetic rats treated with TT. Histopathological examination revealed significant recovery of liver in herb‐treated rats. This investigation suggests that the protective effect of TT for STZ‐induced diabetic rats may be mediated by inhibiting oxidative stress.
Seminars in Cancer Biology | 2015
Abbas K. Samadi; Alan Bilsland; Alexandros G. Georgakilas; Amedeo Amedei; Amr Amin; Anupam Bishayee; Asfar S. Azmi; Bal L. Lokeshwar; Brendan Grue; Carolina Panis; Chandra S. Boosani; Deepak Poudyal; Diana M. Stafforini; Dipita Bhakta; Elena Niccolai; Gunjan Guha; H.P. Vasantha Rupasinghe; Hiromasa Fujii; Kanya Honoki; Kapil Mehta; Katia Aquilano; Leroy Lowe; Lorne J. Hofseth; Luigi Ricciardiello; Maria Rosa Ciriolo; Neetu Singh; Richard L. Whelan; Rupesh Chaturvedi; S. Salman Ashraf; H. M. C. Shantha Kumara
Cancers harbor significant genetic heterogeneity and patterns of relapse following many therapies are due to evolved resistance to treatment. While efforts have been made to combine targeted therapies, significant levels of toxicity have stymied efforts to effectively treat cancer with multi-drug combinations using currently approved therapeutics. We discuss the relationship between tumor-promoting inflammation and cancer as part of a larger effort to develop a broad-spectrum therapeutic approach aimed at a wide range of targets to address this heterogeneity. Specifically, macrophage migration inhibitory factor, cyclooxygenase-2, transcription factor nuclear factor-κB, tumor necrosis factor alpha, inducible nitric oxide synthase, protein kinase B, and CXC chemokines are reviewed as important antiinflammatory targets while curcumin, resveratrol, epigallocatechin gallate, genistein, lycopene, and anthocyanins are reviewed as low-cost, low toxicity means by which these targets might all be reached simultaneously. Future translational work will need to assess the resulting synergies of rationally designed antiinflammatory mixtures (employing low-toxicity constituents), and then combine this with similar approaches targeting the most important pathways across the range of cancer hallmark phenotypes.
Food and Chemical Toxicology | 2009
Amr Amin; Doaa Mahmoud-Ghoneim
The study of chronic hepatic fibrosis has been receiving an escalating attention in the past two decades. The aim of the study was to examine the effects of the water extract of Zizyphus spina-christi (L.) (ZSC) on carbon tetrachloride (CCl(4))-induced hepatic fibrosis. ZSC extract was daily administered [alone (ZSC-control group) or along with CCl(4) (protected groups)] at 0.125 (low dose), 0.250 (medium dose) and 0.350 (high dose) g/kg b.wt. for 8 weeks. Histo-pathological, biochemical and histology texture analyses revealed that ZSC significantly impede the progression of hepatic fibrosis. ZSC resulted in a significant amelioration of liver injury judged by the reduced activities of serum ALT and AST. Oral administration of ZSC has also restored normal levels of malondialdehyde and retained control activities of endogenous antioxidants such as SOD, CAT and GSH. Furthermore, ZSC reduced the expression of alpha-smooth muscle actin, the deposition of types I and III collagen in CCl(4)-injured rats. Texture analysis of microscopic images along with fibrosis index calculation showed improvement in the quality of type I collagen distribution and its quantity after administration of ZSC extract. These results demonstrate that administration of ZSC may be useful in the treatment and prevention of hepatic fibrosis.
Radiotherapy and Oncology | 2014
Mohamed S. Zaghloul; Eman Eldebawy; Soha Ahmed; Amr Mousa; Amr Amin; Amal Refaat; Iman Zaky; Nada El-Khateeb; Mohamed Sabry
BACKGROUND The pediatric diffuse intrinsic pontine glioma (DIPG) outcome remains dismal despite multiple therapeutic attempts. PURPOSE To compare the results of treatment of pediatric diffuse intrinsic pontine glioma (DIPG) using hypofractionated versus conventional radiotherapy. PATIENTS AND METHODS Seventy-one newly diagnosed DIPG children were randomized into hypofractionated (HF) (39Gy/13 fractions in 2.6weeks) and conventional (CF) arm (54Gy/30 fractions in 6weeks). RESULTS The median and one-year overall survival (OS) was 7.8months and 36.4±8.2% for the hypofractionated arm, and 9.5 and 26.2±7.4% for the conventional arm respectively. The 18-month OS difference was 2.2%. The OS hazard ratio (HR) was 1.14 (95% CI: 0.70-1.89) (p=0.59). The hypofractionated arm had a median and one-year progression-free survival (PFS) of 6.6months and 22.5±7.1%, compared to 7.3 and 17.9±7.1% for the conventional arm. The PFS HR was 1.10 (95% CI: 0.67-1.90) (p=0.71). The 18-month PFS difference was 1.1%. These differences exceed the non-inferiority margin. The immediate and delayed side effects were not different in the 2 arms. CONCLUSIONS Hypofractionated radiotherapy offers lesser burden on the patients, their families and the treating departments, with nearly comparable results to conventional fractionation, though not fulfilling the non-inferiority assumption.