Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amr F. Fahmy is active.

Publication


Featured researches published by Amr F. Fahmy.


Cell | 2007

Small-Molecule Inhibition of the Interaction between the Translation Initiation Factors eIF4E and eIF4G

Nathan J. Moerke; Huseyin Aktas; Han Chen; Sonia Cantel; Mikhail Reibarkh; Amr F. Fahmy; John D. Gross; Alexei Degterev; Junying Yuan; Michael Chorev; Jose A. Halperin; Gerhard Wagner

Assembly of the eIF4E/eIF4G complex has a central role in the regulation of gene expression at the level of translation initiation. This complex is regulated by the 4E-BPs, which compete with eIF4G for binding to eIF4E and which have tumor-suppressor activity. To pharmacologically mimic 4E-BP function we developed a high-throughput screening assay for identifying small-molecule inhibitors of the eIF4E/eIF4G interaction. The most potent compound identified, 4EGI-1, binds eIF4E, disrupts eIF4E/eIF4G association, and inhibits cap-dependent translation but not initiation factor-independent translation. While 4EGI-1 displaces eIF4G from eIF4E, it effectively enhances 4E-BP1 association both in vitro and in cells. 4EGI-1 inhibits cellular expression of oncogenic proteins encoded by weak mRNAs, exhibits activity against multiple cancer cell lines, and appears to have a preferential effect on transformed versus nontransformed cells. The identification of this compound provides a new tool for studying translational control and establishes a possible new strategy for cancer therapy.


Nature | 2008

Structure of the DNA deaminase domain of the HIV-1 restriction factor APOBEC3G

Kuan Ming Chen; Phillip J. Gross; Amr F. Fahmy; Yongjian Lu; Keisuke Shindo; Reuben S. Harris; Hiroshi Matsuo

The human APOBEC3G (apolipoprotein B messenger-RNA-editing enzyme, catalytic polypeptide-like 3G) protein is a single-strand DNA deaminase that inhibits the replication of human immunodeficiency virus-1 (HIV-1), other retroviruses and retrotransposons. APOBEC3G anti-viral activity is circumvented by most retroelements, such as through degradation by HIV-1 Vif. APOBEC3G is a member of a family of polynucleotide cytosine deaminases, several of which also target distinct physiological substrates. For instance, APOBEC1 edits APOB mRNA and AID deaminates antibody gene DNA. Although structures of other family members exist, none of these proteins has elicited polynucleotide cytosine deaminase or anti-viral activity. Here we report a solution structure of the human APOBEC3G catalytic domain. Five α-helices, including two that form the zinc-coordinating active site, are arranged over a hydrophobic platform consisting of five β-strands. NMR DNA titration experiments, computational modelling, phylogenetic conservation and Escherichia coli-based activity assays combine to suggest a DNA-binding model in which a brim of positively charged residues positions the target cytosine for catalysis. The structure of the APOBEC3G catalytic domain will help us to understand functions of other family members and interactions that occur with pathogenic proteins such as HIV-1 Vif.


Journal of Biological Chemistry | 2009

The αβ T Cell Receptor Is an Anisotropic Mechanosensor

Sun Taek Kim; Koh Takeuchi; Zhen-Yu J. Sun; Maki Touma; Carlos E. Castro; Amr F. Fahmy; Matthew J. Lang; Gerhard Wagner; Ellis L. Reinherz

Thymus-derived lymphocytes protect mammalian hosts against virus- or cancer-related cellular alterations through immune surveillance, eliminating diseased cells. In this process, T cell receptors (TCRs) mediate both recognition and T cell activation via their dimeric αβ, CD3ϵγ, CD3ϵδ, and CD3ζζ subunits using an unknown structural mechanism. Here, site-specific binding topology of anti-CD3 monoclonal antibodies (mAbs) and dynamic TCR quaternary change provide key clues. Agonist mAbs footprint to the membrane distal CD3ϵ lobe that they approach diagonally, adjacent to the lever-like Cβ FG loop that facilitates antigen (pMHC)-triggered activation. In contrast, a non-agonist mAb binds to the cleft between CD3ϵ and CD3γ in a perpendicular mode and is stimulatory only subsequent to an external tangential but not a normal force (∼50 piconewtons) applied via optical tweezers. Specific pMHC but not irrelevant pMHC activates a T cell upon application of a similar force. These findings suggest that the TCR is an anisotropic mechanosensor, converting mechanical energy into a biochemical signal upon specific pMHC ligation during immune surveillance. Activating anti-CD3 mAbs mimic this force via their intrinsic binding mode. A common TCR quaternary change rather than conformational alterations can better facilitate structural signal initiation, given the vast array of TCRs and their specific pMHC ligands.


Nature Structural & Molecular Biology | 2011

Antibody mechanics on a membrane-bound HIV segment essential for GP41-targeted viral neutralization

Mikyung Kim; Zhen-Yu J. Sun; Kasper D. Rand; Xiaomeng Shi; Likai Song; Yuxing Cheng; Amr F. Fahmy; Shreoshi Majumdar; Gilad Ofek; Yongping Yang; Peter D. Kwong; Jia-huai Wang; John R. Engen; Gerhard Wagner; Ellis L. Reinherz

Broadly neutralizing antibodies such as 2F5 are directed against the membrane-proximal external region (MPER) of HIV-1 GP41 and recognize well-defined linear core sequences. These epitopes can be engrafted onto protein scaffolds to serve as immunogens with high structural fidelity. Although antibodies that bind to this core GP41 epitope can be elicited, they lack neutralizing activity. To understand this paradox, we used biophysical methods to investigate the binding of human 2F5 to the MPER in a membrane environment, where it resides in vivo. Recognition is stepwise, through a paratope more extensive than core binding site contacts alone, and dynamic rearrangement through an apparent scoop-like movement of heavy chain complementarity-determining region 3 (CDRH3) is essential for MPER extraction from the viral membrane. Core-epitope recognition on the virus requires the induction of conformational changes in both the MPER and the paratope. Hence, target neutralization through this lipid-embedded viral segment places stringent requirements on the plasticity of the antibody combining site.


hawaii international conference on system sciences | 1995

Bulk synchronous parallel computing-a paradigm for transportable software

Thomas E. Cheatham; Amr F. Fahmy; Dan C. Stefanescu; Leslie G. Valiant

A necessary condition for the establishment, on a substantial basis, of a parallel software industry would appear to be the availability of technology for generating transportable software, i.e. architecture independent software which delivers scalable performance for a wide variety of applications on a wide range of multiprocessor computers. This paper describes H-BSP-a general purpose parallel computing environment for developing transportable algorithms. H-BSP is based on the Bulk Synchronous Parallel Model (BSP), in which a computation involves a number of supersteps, each having several parallel computational threads that synchronize at the end of the superstep. The BSP Model deals explicitly with the notion of communication among computational threads and introduces parameters g and L that quantify the ratio of communication throughput to computation throughput, and the synchronization period, respectively. These two parameters, together with the number of processors and the problem size, are used to quantify the performance and, therefore, the transportability of given classes of algorithms across machines having different values for these parameters. This paper describes the role of unbundled compiler technology in facilitating the development of such a parallel computer environment.<<ETX>>


Journal of Biological Chemistry | 2008

Eukaryotic Initiation Factor (eIF) 1 Carries Two Distinct eIF5-binding Faces Important for Multifactor Assembly and AUG Selection

Mikhail Reibarkh; Yasufumi Yamamoto; Chingakham Ranjit Singh; Federico del Rio; Amr F. Fahmy; Bumjun Lee; Rafael E. Luna; Miki; Gerhard Wagner; Katsura Asano

Eukaryotic initiation factor (eIF) 1 is a small protein (12 kDa) governing fidelity in translation initiation. It is recruited to the 40 S subunit in a multifactor complex with Met-\batchmode \documentclass[fleqn,10pt,legalpaper]{article} \usepackage{amssymb} \usepackage{amsfonts} \usepackage{amsmath} \pagestyle{empty} \begin{document} \(\mathrm{tRNA}_{\mathrm{i}}^{\mathrm{Met}}\) \end{document}, eIF2, eIF3, and eIF5 and binds near the P-site. eIF1 release in response to start codon recognition is an important signal to produce an 80 S initiation complex. Although the ribosome-binding face of eIF1 was identified, interfaces to other preinitiation complex components and their relevance to eIF1 function have not been determined. Exploiting the solution structure of yeast eIF1, here we locate the binding site for eIF5 in its N-terminal tail and at a basic/hydrophobic surface area termed KH, distinct from the ribosome-binding face. Genetic and biochemical studies indicate that the eIF1 N-terminal tail plays a stimulatory role in cooperative multifactor assembly. A mutation altering the basic part of eIF1-KH is lethal and shows a dominant phenotype indicating relaxed start codon selection. Cheung et al. recently demonstrated that the alteration of hydrophobic residues of eIF1 disrupts a critical link to the preinitiation complex that suppresses eIF1 release before start codon selection ( Cheung, Y.-N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. (2007) Genes Dev. 21, 1217-1230 ). Interestingly, eIF1-KH includes the altered hydrophobic residues. Thus, eIF5 is an excellent candidate for the direct partner of eIF1-KH that mediates the critical link. The direct interaction at eIF1-KH also places eIF5 near the decoding site of the 40 S subunit.


PLOS Pathogens | 2014

Molecular Signatures of Hemagglutinin Stem-Directed Heterosubtypic Human Neutralizing Antibodies against Influenza A Viruses

Yuval Avnir; Aimee St. Clair Tallarico; Quan Karen Zhu; Andrew S. Bennett; Gene Connelly; Jared Sheehan; Jianhua Sui; Amr F. Fahmy; Chiung Yu Huang; Greg Cadwell; Laurie A. Bankston; Andrew T. McGuire; Leonidas Stamatatos; Gerhard Wagner; Robert C. Liddington; Wayne A. Marasco

Recent studies have shown high usage of the IGHV1-69 germline immunoglobulin gene for influenza hemagglutinin stem-directed broadly-neutralizing antibodies (HV1-69-sBnAbs). Here we show that a major structural solution for these HV1-69-sBnAbs is achieved through a critical triad comprising two CDR-H2 loop anchor residues (a hydrophobic residue at position 53 (Ile or Met) and Phe54), and CDR-H3-Tyr at positions 98±1; together with distinctive V-segment CDR amino acid substitutions that occur in positions sparse in AID/polymerase-η recognition motifs. A semi-synthetic IGHV1-69 phage-display library screen designed to investigate AID/polη restrictions resulted in the isolation of HV1-69-sBnAbs that featured a distinctive Ile52Ser mutation in the CDR-H2 loop, a universal CDR-H3 Tyr at position 98 or 99, and required as little as two additional substitutions for heterosubtypic neutralizing activity. The functional importance of the Ile52Ser mutation was confirmed by mutagenesis and by BCR studies. Structural modeling suggests that substitution of a small amino acid at position 52 (or 52a) facilitates the insertion of CDR-H2 Phe54 and CDR-H3-Tyr into adjacent pockets on the stem. These results support the concept that activation and expansion of a defined subset of IGHV1-69-encoded B cells to produce potent HV1-69-sBnAbs does not necessarily require a heavily diversified V-segment acquired through recycling/reentry into the germinal center; rather, the incorporation of distinctive amino acid substitutions by Phase 2 long-patch error-prone repair of AID-induced mutations or by random non-AID SHM events may be sufficient. We propose that these routes of B cell maturation should be further investigated and exploited as a pathway for HV1-69-sBnAb elicitation by vaccination.


Cell Reports | 2012

The C-terminal domain of eukaryotic initiation factor 5 promotes start codon recognition by its dynamic interplay with eIF1 and eIF2β.

Rafael E. Luna; Haribabu Arthanari; Hiroyuki Hiraishi; Jagpreed Nanda; Pilar Martin-Marcos; Michelle A. Markus; Barak Akabayov; Alexander G. Milbradt; Lunet E. Luna; Hee-Chan Seo; Sven G. Hyberts; Amr F. Fahmy; Mikhail Reibarkh; David Miles; Patrick R. Hagner; Elizabeth O'Day; Tingfang Yi; Assen Marintchev; Alan G. Hinnebusch; John R. Lorsch; Katsura Asano; Gerhard Wagner

Recognition of the proper start codon on mRNAs is essential for protein synthesis, which requires scanning and involves eukaryotic initiation factors (eIFs) eIF1, eIF1A, eIF2, and eIF5. The carboxyl terminal domain (CTD) of eIF5 stimulates 43S preinitiation complex (PIC) assembly; however, its precise role in scanning and start codon selection has remained unknown. Using nuclear magnetic resonance (NMR) spectroscopy, we identified the binding sites of eIF1 and eIF2β on eIF5-CTD and found that they partially overlapped. Mutating select eIF5 residues in the common interface specifically disrupts interaction with both factors. Genetic and biochemical evidence indicates that these eIF5-CTD mutations impair start codon recognition and impede eIF1 release from the PIC by abrogating eIF5-CTD binding to eIF2β. This study provides mechanistic insight into the role of eIF5-CTDs dynamic interplay with eIF1 and eIF2β in switching PICs from an open to a closed state at start codons.


Physical Review A | 2010

Nuclear-magnetic-resonance quantum calculations of the Jones polynomial.

Raimund Marx; Amr F. Fahmy; Louis H. Kauffman; Samuel J. Lomonaco; A. Spörl; Nikolas Pomplun; Thomas Schulte-Herbrüggen; John Myers; Steffen J. Glaser

The repertoire of problems theoretically solvable by a quantum computer recently expanded to include the approximate evaluation of knot invariants, specifically the Jones polynomial. The experimental implementation of this evaluation, however, involves many known experimental challenges. Here we present experimental results for a small-scale approximate evaluation of the Jones Polynomial by nuclear-magnetic resonance (NMR), in addition we show how to escape from the limitations of NMR approaches that employ pseudo pure states. Specifically, we use two spin 1/2 nuclei of natural abundance chloroform and apply a sequence of unitary transforms representing the Trefoil Knot, the Figure Eight Knot and the Borromean Rings. After measuring the state of the molecule in each case, we are able to estimate the value of the Jones Polynomial for each of the knots.


Structure | 2013

Conformational Dynamics of the Rpt6 ATPase in Proteasome Assembly and Rpn14 Binding

Aaron Ehlinger; Soyeon Park; Amr F. Fahmy; Jeffrey W. Lary; James L. Cole; Daniel Finley; Kylie J. Walters

Juxtaposed to either or both ends of the proteasome core particle (CP) can exist a 19S regulatory particle (RP) that recognizes and prepares ubiquitinated proteins for proteolysis. RP triphosphatase proteins (Rpt1-Rpt6), which are critical for substrate translocation into the CP, bind chaperone-like proteins (Hsm3, Nas2, Nas6, and Rpn14) implicated in RP assembly. We used NMR and other biophysical methods to reveal that S. cerevisiae Rpt6s C-terminal domain undergoes dynamic helix-coil transitions enabled by helix-destabilizing glycines within its two most C-terminal α helices. Rpn14 binds selectively to Rpt6s four-helix bundle, with surprisingly high affinity. Loss of Rpt6s partially unfolded state by glycine substitution (Rpt6 G³⁶⁰,³⁸⁷A) disrupts holoenzyme formation in vitro, an effect enhanced by Rpn14. S. cerevisiae lacking Rpn14 and incorporating Rpt6 G³⁶⁰,³⁸⁷A demonstrate hallmarks of defective proteasome assembly and synthetic growth defects. Rpt4 and Rpt5 exhibit similar exchange, suggesting that conserved structural heterogeneity among Rpt proteins may facilitate RP-CP assembly.

Collaboration


Dive into the Amr F. Fahmy's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wolfgang Bermel

Goethe University Frankfurt

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge