Amr Nouraldeen
Lexicon Pharmaceuticals
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amr Nouraldeen.
Journal of Medicinal Chemistry | 2010
Jeffrey Bagdanoff; Michael S. Donoviel; Amr Nouraldeen; Marianne Carlsen; Theodore C. Jessop; James Tarver; Saadat Aleem; Li Dong; Haiming Zhang; Lakmal W. Boteju; Jill Hazelwood; Jack Yan; Mark S. Bednarz; Suman Layek; Iris B. Owusu; Suma Gopinathan; Liam Moran; Zhong Lai; Jeffrey A. Kramer; S. David Kimball; Padmaja Yalamanchili; William Heydorn; Kenny Frazier; Barbara Brooks; Philip Manton Brown; Alan A. Wilson; William K. Sonnenburg; Alan Main; Kenneth G. Carson; Tamas Oravecz
Sphingosine 1-phosphate lyase (S1PL) has been characterized as a novel target for the treatment of autoimmune disorders using genetic and pharmacological methods. Medicinal chemistry efforts targeting S1PL by direct in vivo evaluation of synthetic analogues of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI, 1) led to the discovery of 2 (LX2931) and 4 (LX2932). The immunological phenotypes observed in S1PL deficient mice were recapitulated by oral administration of 2 or 4. Oral dosing of 2 or 4 yielded a dose-dependent decrease in circulating lymphocyte numbers in multiple species and showed a therapeutic effect in rodent models of rheumatoid arthritis (RA). Phase I clinical trials indicated that 2, the first clinically studied inhibitor of S1PL, produced a dose-dependent and reversible reduction of circulating lymphocytes and was well tolerated at dose levels of up to 180 mg daily. Phase II evaluation of 2 in patients with active rheumatoid arthritis is currently underway.
Journal of Medicinal Chemistry | 2008
Zhi Cai Shi; Arokiasamy Devasagayaraj; Kunjian Gu; Haihong Jin; Brett Marinelli; Lakshman Samala; Sheldon Scott; Terry R. Stouch; Ashok Tunoori; Ying Wang; Yi Zang; Chengmin Zhang; S. David Kimball; Alan Main; Weimei Sun; Qi Yang; Amr Nouraldeen; Xiang Qing Yu; Eric Buxton; Shiv Patel; Nghi Nguyen; Jon Swaffield; David R. Powell; Alan Wilson; Qingyun Liu
The discovery of a novel class of peripheral tryptophan hydroxylase (TPH) inhibitors is described. This class of TPH inhibitors exhibits excellent potency in in vitro biochemical and cell-based assays, and it selectively reduces serotonin levels in the murine intestine after oral administration without affecting levels in the brain. These TPH1 inhibitors may provide novel treatments for gastrointestinal disorders associated with dysregulation of the serotonergic system, such as chemotherapy-induced emesis and irritable bowel syndrome.
Journal of Medicinal Chemistry | 2009
Jeffrey Bagdanoff; Michael S. Donoviel; Amr Nouraldeen; James Tarver; Qinghong Fu; Marianne Carlsen; Theodore C. Jessop; Haiming Zhang; Jill Hazelwood; Huy H. Nguyen; Simon D.P. Baugh; Michael Gardyan; Kristen M. Terranova; Joseph Barbosa; Jack Yan; Mark S. Bednarz; Suman Layek; Lawrence F. Courtney; Jerry Andrew Taylor; Ann Marie Digeorge-Foushee; Suma Gopinathan; Debra Bruce; Traci Smith; Liam Moran; Emily O’Neill; Jeffrey A. Kramer; Zhong Lai; S. David Kimball; Qingyun Liu; Weimei Sun
During nearly a decade of research dedicated to the study of sphingosine signaling pathways, we identified sphingosine-1-phosphate lyase (S1PL) as a drug target for the treatment of autoimmune disorders. S1PL catalyzes the irreversible decomposition of sphingosine-1-phosphate (S1P) by a retro-aldol fragmentation that yields hexadecanaldehyde and phosphoethanolamine. Genetic models demonstrated that mice expressing reduced S1PL activity had decreased numbers of circulating lymphocytes due to altered lymphocyte trafficking, which prevented disease development in multiple models of autoimmune disease. Mechanistic studies of lymphoid tissue following oral administration of 2-acetyl-4(5)-(1(R),2(S),3(R),4-tetrahydroxybutyl)-imidazole (THI) 3 showed a clear relationship between reduced lyase activity, elevated S1P levels, and lower levels of circulating lymphocytes. Our internal medicinal chemistry efforts discovered potent analogues of 3 bearing heterocycles as chemical equivalents of the pendant carbonyl present in the parent structure. Reduction of S1PL activity by oral administration of these analogues recapitulated the phenotype of mice with genetically reduced S1PL expression.
Journal of Medicinal Chemistry | 2009
Nicole Cathleen Goodwin; Ross Mabon; Bryce Alden Harrison; Zheng Y. Almstead; Yiling Xie; Jason P. Healy; Lindsey Buhring; Christopher M. DaCosta; Jennifer Bardenhagen; Faika Mseeh; Qingyun Liu; Amr Nouraldeen; Alan Wilson; S. David Kimball; David R. Powell; David B. Rawlins
The prevalence of diabetes throughout the world continues to increase and has become a major health issue. Recently there have been several reports of inhibitors directed toward the sodium-dependent glucose cotransporter 2 (SGLT2) as a method of maintaining glucose homeostasis in diabetic patients. Herein we report the discovery of the novel O-xyloside 7c that inhibits SGLT2 in vitro and urinary glucose reabsorption in vivo.
PLOS ONE | 2014
Konstantin V. Salojin; Brian D. Hamman; Wei-Chun Chang; Kanchan Jhaver; Amin Al-Shami; Jeannette Crisostomo; Carrie Wilkins; Ann Marie Digeorge-Foushee; Jason Allen; Nita Patel; Suma Gopinathan; Julia Zhou; Amr Nouraldeen; Theodore C. Jessop; Jeffrey Bagdanoff; David J. Augeri; Robert Read; Peter Vogel; Jonathan Swaffield; Alan Wilson; Kenneth A. Platt; Kenneth G. Carson; Alan Main; Brian Zambrowicz; Tamas Oravecz
Mammalian sterile 20-like kinase 1 (Mst1) is a MAPK kinase kinase kinase which is involved in a wide range of cellular responses, including apoptosis, lymphocyte adhesion and trafficking. The contribution of Mst1 to Ag-specific immune responses and autoimmunity has not been well defined. In this study, we provide evidence for the essential role of Mst1 in T cell differentiation and autoimmunity, using both genetic and pharmacologic approaches. Absence of Mst1 in mice reduced T cell proliferation and IL-2 production in vitro, blocked cell cycle progression, and elevated activation-induced cell death in Th1 cells. Mst1 deficiency led to a CD4+ T cell development path that was biased toward Th2 and immunoregulatory cytokine production with suppressed Th1 responses. In addition, Mst1−/− B cells showed decreased stimulation to B cell mitogens in vitro and deficient Ag-specific Ig production in vivo. Consistent with altered lymphocyte function, deletion of Mst1 reduced the severity of experimental autoimmune encephalomyelitis (EAE) and protected against collagen-induced arthritis development. Mst1−/− CD4+ T cells displayed an intrinsic defect in their ability to respond to encephalitogenic antigens and deletion of Mst1 in the CD4+ T cell compartment was sufficient to alleviate CNS inflammation during EAE. These findings have prompted the discovery of novel compounds that are potent inhibitors of Mst1 and exhibit desirable pharmacokinetic properties. In conclusion, this report implicates Mst1 as a critical regulator of adaptive immune responses, Th1/Th2-dependent cytokine production, and as a potential therapeutic target for immune disorders.
Journal of Pharmacology and Experimental Therapeutics | 2014
David R. Powell; Christopher M. DaCosta; Melinda Smith; Deon Doree; Angela L. Harris; Lindsey Buhring; William Heydorn; Amr Nouraldeen; Wendy Xiong; Padmaja Yalamanchili; Faika Mseeh; Alan Wilson; Brian Zambrowicz; Zhi-Ming Ding
Treatments that lower blood glucose levels and body weight should benefit patients with type 2 diabetes mellitus (T2DM). We developed LX4211 [(2S,3R,4R,5S,6R)-2-(4-chloro-3-(4-ethoxybenzyl)phenyl)-6-(methylthio)tetrahydro-2H-pyran-3,4,5-triol], an orally available small molecule that decreases postprandial glucose excursions by inhibiting intestinal sodium/glucose cotransporter 1 (SGLT1) and increases urinary glucose excretion (UGE) by inhibiting renal SGLT2. In clinical studies of patients with T2DM, LX4211 appears to act through dual SGLT1/SGLT2 inhibition to improve glycemic control and promote weight loss. Here, we present preclinical studies that explored the ability of LX4211 to improve glycemic control and promote weight loss. We found that 1) LX4211 inhibited in vitro glucose transport mediated by mouse, rat, and dog SGLT1 and SGLT2; 2) a single daily LX4211 dose markedly increased UGE for >24 hours in mice, rats, and dogs; and 3) in the KK.Cg-Ay/J heterozygous (KKAy) mouse model of T2DM, LX4211 lowered A1C and postprandial glucose concentrations while increasing postprandial glucagon-like peptide 1 concentrations. Also, long-term LX4211 treatment 1) decreased oral glucose tolerance test (OGTT) glucose excursions, increased OGTT 30-minute insulin concentrations and increased pancreatic insulin content in KKAy mice; and 2) decreased weight gain in dogs and rats but not in KKAy mice while increasing food consumption in dogs, rats, and KKAy mice; in these KKAy mice, calories lost through UGE were completely offset by calories gained through hyperphagia. These findings suggest that LX4211 improves glycemic control by dual SGLT1/SGLT2 inhibition in mice as in humans, and that the LX4211-mediated weight loss observed in patients with T2DM may be attenuated by LX4211-mediated hyperphagia in some of these individuals.
Xenobiotica | 2010
X. Q. Yu; J. Kramer; L. Moran; E. O’Neill; Amr Nouraldeen; Tamas Oravecz; Alan Wilson
2-Acetyl-4(5)-tetrahydroxybutyl imidazole (THI) has been shown to reduce rodent peripheral blood lymphocytes through increasing lymphoid sphingosine 1-phosphate (S1P) by inhibiting S1P lyase. The objective of this study was to characterize the relationship between systemic THI exposure, splenic S1P concentrations, and lymphopenia in rats. Following the oral administration of 10 and 100 mg kg−1 THI to male rats, THI was rapidly absorbed and reached a plasma peak level at 1 h post-dosing. Splenic S1P increased and reached the peak level at 24 h. Blood lymphocyte count decreased as the splenic S1P level increased. THI plasma concentration was linked to splenic S1P concentration using an indirect model incorporated with a four-step signal transduction model. In turn, the S1P level was directly coupled with blood lymphocyte number. The integrated model simultaneously captured the splenic S1P and blood lymphocyte responses. This pharmacokinetic–biomarker–pharmacodynamic model resolved the remarkable discrepancy between plasma THI concentration and the pharmacological response and quantitatively described the relationship of THI exposure, S1P, and lymphopenic response.
Journal of Pharmacological and Toxicological Methods | 2013
Suma Gopinathan; Emily O’Neill; Lawrence A. Rodriguez; Rose Champ; Megan Phillips; Amr Nouraldeen; Mary Wendt; Alan Wilson; Jeffrey A. Kramer
INTRODUCTION Toxicology and pharmacology studies conducted in the early stages of drug discovery often require formulation strategies involving the use of excipients with limited knowledge regarding their preclinical safety liabilities. The use of excipients is vital to efforts to solubilize and deliver small molecules in drug discovery. Whilst excipients can have a significant impact on pharmacology and toxicology studies by enabling solubility to maximize systemic exposure, they also have the potential to obscure clinical pathology endpoints. In this article, we report on the in vivo safety in rats for 18 excipients commonly employed in formulations for preclinical pharmacology and toxicology studies. METHODS The test articles were administered once daily for five days, by oral gavage to male Sprague Dawley rats, and the animals monitored for visible clinical signs. At the end of the study, routine necropsy and clinical pathology endpoints were investigated. RESULTS None of the excipients tested were acutely toxic. However, there were effects on parameters commonly evaluated as indicators of health and/or toxicological response in regulated preclinical safety studies. DISCUSSION While the excipients tested were generally well tolerated, several were found to affect common clinical pathology endpoints in a manner that might confound or conceivably mask the interpretation of compound mediated adverse/pharmacological effects.
Future Medicinal Chemistry | 2010
Suma Gopinathan; Amr Nouraldeen; Alan Ge Wilson
For small-molecule drugs the oral route of administration remains the most popular means of delivery for many indications. Optimizing oral bioavailability is, therefore, of critical importance in both drug discovery and development. However, while formulation development is routinely evaluated in clinical development, limited attention appears to be focused on improving exposure following oral delivery in early preclinical testing. The reasons for this appear to be limited compound availability and the requirement for a very rapid turnaround time. While some effort has been made to address solubility for intravenous formulation development, there is limited information available regarding formulation screening for oral delivery in drug discovery and preclinical development. In this brief article, we provide some details on our high-throughput, low compound requirement screen for oral formulation development. This screen has direct application in lead identification and development. The assay has been vali...
Bioorganic & Medicinal Chemistry Letters | 2015
Carolyn Diane Dzierba; Yingzhi Bi; Bireshwar Dasgupta; Richard A. Hartz; Vijay T. Ahuja; Giovanni Cianchetta; Godwin Kumi; Li Dong; Saadat Aleem; Cynthia Anne Fink; Yudith Garcia; Michael Alan Green; Jianxin Han; Soojin Kwon; Ying Qiao; Jiancheng Wang; Yulian Zhang; Ying Liu; Greg Zipp; Zhi Liang; Neil T. Burford; Meredith Ferrante; Robert L. Bertekap; Martin A. Lewis; Angela Cacace; James E. Grace; Alan Wilson; Amr Nouraldeen; Ryan Westphal; David S. Kimball
Small molecule modulators of GPR88 activity (agonists, antagonists, or modulators) are of interest as potential agents for the treatment of a variety of psychiatric disorders including schizophrenia. A series of phenylglycinol and phenylamine analogs have been prepared and evaluated for their GPR88 agonist activity and pharmacokinetic (PK) properties.