Amrita Khaire
Bharati Vidyapeeth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Amrita Khaire.
Brain & Development | 2014
Richa Rathod; Amrita Khaire; Nisha G. Kemse; Anvita Kale; Sadhana Joshi
INTRODUCTION The consequences of wide spread vegetarianism due to low vitamin B12 on brain development and functioning is gaining importance. However, there are no studies which have evaluated exclusively vitamin B12 supplementation during pregnancy on brain growth. A series of our animal studies have documented adverse effects of maternal micronutrient imbalance on brain neurotrophins and its amelioration by omega-3 fatty acids. Therefore, the present study investigated the effect of maternal supplementation with vitamin B12 alone and B12 plus omega-3 fatty acid on pup brain fatty acids and neurotrophins at birth and 3 mo of age. METHODS AND RESULTS Pregnant Wistar rats and their male offspring were assigned to 3 dietary groups: Control (normal vitamin B12 (25 μg/kg), vitamin B12 supplemented (BS) (50 μg/kg), vitamin B12 supplemented with omega-3 fatty acid (BSO) till 3 month of age. Maternal vitamin B12 supplementation (BS) increased brain BDNF (protein and mRNA) and DHA levels in pups at birth and in the hippocampus at 3 month of age (BDNF only). These effects were further enhanced by omega-3 fatty acid supplementation to vitamin B12 supplemented group. The spatial memory performance was found to be enhanced in BSO group which was characterised by less number of errors in radial eight arm maze. CONCLUSION Our results indicate that a combination of omega-3 fatty acid and vitamin B12 enriched diet may exert beneficial effects on synaptic plasticity and cognition, which may prove beneficial for mental health, particularly in preventing neurocognitive disorders.
Brain & Development | 2014
Suchitra Roy; Pratiksha Sable; Amrita Khaire; Karuna Randhir; Anvita Kale; Sadhana Joshi
INTRODUCTION Our earlier studies have shown that a maternal diet imbalanced with micronutrients like folic acid, vitamin B12 has adverse effects on fatty acid metabolism, global methylation patterns and levels of brain neurotrophins in the offspring at birth. However, it is not clear if these effects are mediated through oxidative stress. The role of oxidative stress in influencing epigenetic mechanisms and thereby fetal programming is not well studied. METHODS AND RESULTS Pregnant female rats were divided into six treatment groups at two levels of folic acid both in the presence and absence of vitamin B12. Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups. Following delivery, 8 dams from each group were randomly shifted back to control and the remaining 8 continued on the same treatment diet. Our results indicate for the first time that an imbalance in maternal micronutrients reduces the antioxidant enzymes superoxide dismutase (SOD) and glutathione peroxidase (GPx) (p<0.05 for both) at birth. At d21 of life, the levels of MDA and GPx (p<0.05 for both) in pup brain from the micronutrient imbalanced group were higher as compared to control while omega 3 fatty acid supplementation normalizes the levels of GPx. CONCLUSION Our data shows that maternal micronutrient imbalance adversely affects antioxidant defense mechanisms while omega 3 fatty acid supplementation ameliorates some of the negative effects. Our study throws light on the role of oxidative stress in fetal brain programming and consequential risk for neurodegenerative disorders in later life.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2015
Amrita Khaire; Richa Rathod; Anvita Kale; Sadhana Joshi
Our recent study indicates that maternal vitamin B12 and omega-3 fatty acid status influence plasma and erythrocyte fatty acid profile in dams. The present study examines the effects of prenatal and postnatal vitamin B12 and omega-3 fatty acid status on lipid metabolism in the offspring. Pregnant dams were divided into five groups: Control; Vitamin B12 deficient (BD); Vitamin B12 supplemented (BS); Vitamin B12 deficient group supplemented with omega-3 fatty acids (BDO); Vitamin B12 supplemented group with omega-3 fatty acids (BSO). The offspring were continued on the same diets till 3 month of age. Vitamin B12 deficiency increased cholesterol levels (p<0.01) but reduced docosahexaenoic acid (DHA) (p<0.05), liver mRNA levels of acetyl CoA carboxylase-1 (ACC-1) (p<0.05) and carnitine palmitoyltransferase-1 (CPT-1) (p<0.01) in the offspring. Omega-3 fatty acid supplementation to this group normalized cholesterol but not mRNA levels of ACC-1 and CPT-1. Vitamin B12 supplementation normalized the levels cholesterol to that of control but increased plasma triglyceride (p<0.01) and reduced liver mRNA levels of adiponectin, ACC-1, and CPT-1 (p<0.01 for all). Supplementation of both vitamin B12 and omega-3 fatty acid normalized triglyceride and mRNA levels of all the above genes. Prenatal and postnatal vitamin B12 and omega-3 fatty acids together play a crucial role in regulating the genes involved in lipid metabolism in adult offspring.
Reproduction, Fertility and Development | 2015
Amrita Khaire; Richa Rathod; Nisha G. Kemse; Anvita Kale; Sadhana Joshi
Maternal vitamin B12 deficiency leads to an adverse pregnancy outcome and increases the risk for developing diabetes and metabolic syndrome in mothers in later life. Our earlier studies have demonstrated that vitamin B12 and n-3 polyunsaturated fatty acids (PUFA) are interlinked in the one carbon cycle. The present study for the first time examines the effect of maternal n-3 PUFA supplementation to vitamin B12 deficient or supplemented diets on pregnancy outcome, fatty-acid status and metabolic variables in Wistar rats. Pregnant dams were assigned to one of the following groups: control, vitamin B12 deficient, vitamin B12 supplemented, vitamin B12 deficient + n-3 PUFA or vitamin B12 supplemented + n-3 PUFA. The amount of vitamin B12 in the supplemented group was 0.50 μg kg(-1) diet and n-3 PUFA was alpha linolenic acid (ALA) 1.68, eicosapentaenoic acid 5.64, docosahexaenoic acid (DHA) 3.15 (g per 100g fatty acids per kg diet). Our findings indicate that maternal vitamin B12 supplementation did not affect the weight gain of dams during pregnancy but reduced litter size and weight and was ameliorated by n-3 PUFA supplementation. Vitamin B12 deficiency or supplementation resulted in a low percentage distribution of plasma arachidonic acid and DHA. n-3 PUFA supplementation to these diets improved the fatty-acid status. Vitamin B12 deficiency resulted in higher homocysteine and insulin levels, which were normalised by supplementation with either vitamin B12 or n-3 PUFA. Our study suggests that maternal vitamin B12 status is critical in determining pregnancy outcome and metabolic variables in dams and that supplementation with n-3 PUFA is beneficial.
Biofactors | 2015
Richa Rathod; Amrita Khaire; Anvita Kale; Sadhana Joshi
In vegetarian population, vitamin B12 deficiency coexists with suboptimal levels of omega-3 fatty acids. Studies indicate a need for supplementation/fortification of vitamin B12 and omega-3 fatty acids to reduce the risk of brain disorders. We have described the effects of vitamin B12 and omega-3 fatty acid supplementation on brain development in F1 generation animals. The current study investigates the effects of vitamin B12 and omega-3 fatty acids supplementation on brain function and cognition. Pregnant Wistar rats were assigned the following groups: control, vitamin B12 deficient (BD), vitamin B12 deficient + omega-3 fatty acid (BDO), vitamin B12 supplemented (BS), vitamin B12 supplemented + omega-3 fatty acid (BSO). The same diets were continued for two generations. BDO group showed higher (P < 0.05) levels of BDNF (brain derived neurotrophic factor) and DHA (docosahexaenoic acid) in the cortex and hippocampus as compared with the BD group. The cognitive performance was also normalized in this group. BS showed comparable levels of DHA, BDNF (protein and mRNA), and CREB mRNA (cAMP response element-binding protein) to that of control group while Tropomyosin receptor kinase mRNA levels were higher. The combined vitamin B12 and omega-3 fatty acid supplementation further enhanced the levels of DHA (P < 0.05) and BDNF (P < 0.05) in the hippocampus and CREB mRNA (P < 0.01) in the cortex as compared with BS group. The cognitive performance of these animals was higher (P < 0.05) as compared with BS group. Our data indicates the beneficial effects of vitamin B12 and omega-3 fatty acid supplementation across two generations on brain development and function.
Prostaglandins Leukotrienes and Essential Fatty Acids | 2015
Amrita Khaire; Anvita Kale; Sadhana Joshi
It is well established that alterations in the mothers diet or metabolism during pregnancy has long-term adverse effects on the lipid metabolism in the offspring. There is growing interest in the role of specific nutrients especially omega-3 fatty acids in the pathophysiology of lipid disorders. A series of studies carried out in humans and rodents in our department have consistently suggested a link between omega-3 fatty acids especially docosahexaenoic acid and micronutrients (vitamin B12 and folic acid) in the one carbon metabolic cycle and its effect on the fatty acid metabolism, hepatic transcription factors and DNA methylation patterns. However the association of maternal intake or metabolism of these nutrients with fetal lipid metabolism is relatively less explored. In this review, we provide insights into the role of maternal omega-3 fatty acids and vitamin B12 and their influence on fetal lipid metabolism through various mechanisms which influence phosphatidylethanolamine-N-methyltransferase activity, peroxisome proliferator activated receptor, adiponectin signaling pathway and epigenetic process like chromatin methylation. This will help understand the possible mechanisms involved in fetal lipid metabolism and may provide important clues for the prevention of lipid disorders in the offspring.
International Journal of Developmental Neuroscience | 2015
Richa Rathod; Amrita Khaire; Anvita Kale; Sadhana Joshi
Vitamin B12 and omega‐3 fatty acids are critical for normal brain development and function and their deficiencies during pregnancy could have adverse effects on cognitive performance in children. Our earlier studies indicate that both maternal vitamin B12 and omega‐3 fatty acids influence brain development by regulating the levels of neurotrophins. Literature suggests that there exists a cross talk between neurotrophins like nerve growth factor (NGF) and angiogenic factors like vascular endothelial growth factor (VEGF). It remains to be established whether maternal nutrients like vitamin B12 and omega‐3 fatty acids influence the levels of angiogenic markers like VEGF and NGF in the brain of the offspring. Therefore the present study examines the effect of maternal vitamin B12 and omega‐3 fatty acids on protein and mRNA levels of VEGF, HIF‐1 alpha (hypoxia inducible factor alpha) and NGF in the pup brain at birth. Pregnant Wistar rats were divided into five dietary groups (n = 8 each): control, vitamin B12 deficient, vitamin B12 deficient + omega‐3 fatty acid, vitamin B12 supplemented, vitamin B12 supplemented + omega‐3 fatty acid. At birth the pups were dissected to collect the brain tissue. Maternal vitamin B12 deficiency showed lower (p < 0.05) pup brain mRNA and protein levels (p < 0.01) of VEGF, higher (p < 0.01) HIF‐1 alpha protein levels, lower (p < 0.05) NGF protein levels while NGF mRNA levels were not altered. Omega‐3 fatty acid supplementation to a vitamin B12 deficient group normalized the VEGF mRNA levels, NGF protein levels and HIF‐1 alpha protein levels. Vitamin B12 supplementation showed similar protein and mRNA levels of VEGF and NGF as well as HIF‐1 alpha protein levels as compared to control. Omega‐3 fatty acid supplementation to the vitamin B12 supplemented group showed higher (p < 0.01) protein and mRNA levels of NGF but the protein and mRNA levels of VEGF were comparable to control. In conclusion maternal vitamin B12 and omega‐3 fatty acids both influence the levels and expression of neurotrophins and angiogenic factors in the offspring brain suggesting a possible benefit of combined maternal supplementation of these vital nutrients.
Pharmaceutical Biology | 2015
Rashmi S. Tupe; Neena M. Sankhe; Shamim Shaikh; Nisha G. Kemse; Amrita Khaire; Devyani V. Phatak; Juhi U. Parikh
Abstract Context: Glycated albumin is reported to elicit pathobiologic effects in diabetic nephropathy and abrogating its biologic effects has novel therapeutic potential. Objective: This study examines the effects of dietary plants extracts (Laurus nobilis, Carum carvi, Coccinia grandis, Mentha arvensis, Phaseolus vulgaris) against albumin glycation and its toxicity to erythrocytes and HEK293 cells. Materials and methods: Albumin (10 mg/ml) was incubated with fructose (250 mM) in PBS along with aqueous plant extracts (1% w/v) for 4 d. After incubation, the antiglycation potential of extracts was estimated by measuring AGEs, fructosamine, amyloids, carbonyls, free amino groups, and antioxidant potential of albumin. The glycation extent of the treated samples was determined by boronate affinity chromatography. Effect of extracts against glycation induced cytotoxicity in erythrocytes and HEK 293 cells was assessed by estimating viability, glutathione, and antioxidant capacity. Plant extracts were tested for their phenolic content and antioxidant potential (reducing potential, DPPH, ABTS, NO, and H2O2 radical scavenging activities). Results: Plant extracts significantly decreased the AGEs formation and amyloid aggregation in glycated BSA (p < 0.001). Further, fructosamine and carbonyls were reduced to 55–72% and 83–89%, respectively. Free amino group and antioxidant activity of albumin were also preserved by 1.25–1.40-fold and 1.75–1.8-fold, respectively. Further, co-incubation of extracts with glycated albumin, protected erythrocytes, and HEK293 cells as they inhibited cellular hemolysis/toxicity (p < 0.001) by upregulating cellular antioxidants. Discussion and conclusion: Plant co-incubation reversed many modifications in albumin glycation, cellular dysfunction indicating that dietary sources with antiglycating and antioxidant potential could be considered for the effective management of diabetic nephropathy.
Journal of Food Science and Technology-mysore | 2015
Rashmi S. Tupe; Neena M. Sankhe; Shamim Shaikh; Devyani V. Phatak; Juhi U. Parikh; Amrita Khaire; Nisha G. Kemse
Azadirachta indica, Emblica officinalis, Syzygium cumini and Terminalia bellirica are common in Indian system of traditional medicine for the prevention of diabetes and its complications. The aim of the present study was to comprehensively and comparatively investigate the antiglycation potential of these plant extracts at multiple stages and their possible protective effect against glycated albumin mediated toxicity to erythrocytes. Antiglycation activities of these plant extracts was measured by co-incubation of plant extract with bovine serum albumin-fructose glycation model. The multistage glycation markers- fructosamines (early stage), protein carbonyls (intermediate stage) and AGEs (late stage) are investigated along with measurement of thiols and β aggregation of albumin using amyloid-specific dyes–Congo red and Th T. Protection of erythrocytes from glycated albumin induced toxicity by these plant extracts was assessed by measuring erythrocytes hemolysis, lipid peroxidation, reduced glutathione and intracellular antioxidant capacity. Total phenolics, reducing power and antioxidant activities of the plant extracts were also measured. In vitro glycation assays showed that plant extracts exerted site specific inhibitory effects at multiple stages, with T. bellirica showing maximum attenuation. In erythrocytes, along with the retardation of glycated albumin induced hemolysis and lipid-peroxidation, T. bellirica considerably maintained cellular antioxidant potential. Significant positive correlations were observed between erythrocyte protection parameters with total phenolics. These plant extracts especially T. bellirica prevents glycation induced albumin modifications and subsequent toxicity to erythrocytes which might offer additional protection against diabetic vascular complications.
Pharmaceutical Biology | 2017
Rashmi S. Tupe; Nisha G. Kemse; Amrita Khaire; Shamim Shaikh
Abstract Context: Protein glycation is the major contributing factor in the development of diabetic complications. The antiglycation potential of medicinal plants provides a promising opportunity as complementary interventions for complications. Objective: To investigate the antiglycation potential of 19 medicinal plants extracts using albumin by estimating different indicators: (1) glycation (early and late), (2) albumin oxidation, and (3) amyloid aggregation. Materials and methods: The effect of aqueous plant extracts (1% w/v) on protein glycation was assessed by incubating albumin (10 mg/mL) with fructose (250 mM) for 4 days. Degree of protein glycation in the absence and presence of plant extracts was assessed by estimating fructosamine, advanced glycation end products (AGEs), carbonyls, free thiol group and β-amyloid aggregation. Results: Petroselinum crispum, Boerhavia diffusa, Terminalia chebula, Swertia chirayita and Glycyrrhiza glabra showed significant antiglycating activity. P. crispum and A. barbadensis inhibited the carbonyl stress and protected the thiol group from oxidative damage. There was significant correlation between protein thiols and amyloid inhibition (R = −.69, p < .001). Conclusion: P. crispum, B. diffusa and T. chebula had the most potent antiglycation activity. These plant exerted noticeable antiglycation activity at different glycation modifications of albumin. These findings are important for identifying plants with potential to combat diabetic complications.