Anvita Kale
Bharati Vidyapeeth University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Anvita Kale.
Psychiatry Research-neuroimaging | 2003
Prabhakar K Ranjekar; Ashwini Hinge; Mahabaleshwar V Hegde; Madhav Ghate; Anvita Kale; Sandhya Sitasawad; Ulhas Wagh; Vijay Debsikdar; Sahebarao P. Mahadik
Oxidative stress-mediated cell damage has been considered in the pathophysiology of schizophrenia. Abnormal findings have often been considered related to differences in ethnicity, life style, dietary patterns and medications, all of which influence indices of oxidative stress and oxidative cell damage. To minimize these confounds, schizophrenic patients were compared with age-matched control subjects with the same ethnic background and similar lifestyle, as well as with bipolar mood disorder (BMD) patients. Levels of antioxidant defense enzymes (i.e. superoxide dismutase, SOD; catalase, CAT; and glutathione peroxidase, GPx) were lower in schizophrenic patients than in controls, indicating conditions for increased oxidative stress. The contents of plasma thiobarbituric acid reactive substances (TBARS) were only marginally higher in schizophrenic patients, who had normal levels of arachidonic acid (AA), a major source of TBARS, indicating no significant oxidative membrane lipid peroxidation. Levels of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), however, were significantly lower in schizophrenic patients. When the same indices in BMD patients were compared with findings in matched controls, levels of only SOD and CAT were lower in the patients, whereas GPx was not. Again, as in schizophrenia, the contents of TBARS were marginally higher in BMD patients with no change in levels of AA. Levels of alpha-linolenic acid and EPA were significantly lower and levels of DHA were slightly lower in BMD patients. These data indicate that certain biochemical characteristics may be common to a spectrum of psychiatric disorders, and suggest supplementation of antioxidants and essential fatty acids might affect clinical outcome.
PLOS ONE | 2011
Asmita Kulkarni; Kamini Dangat; Anvita Kale; Pratiksha Sable; Preeti Chavan-Gautam; Sadhana Joshi
Potential adverse effects of excess maternal folic acid supplementation on a vegetarian population deficient in vitamin B12 are poorly understood. We have previously shown in a rat model that maternal folic acid supplementation at marginal protein levels reduces brain omega-3 fatty acid levels in the adult offspring. We have also reported that reduced docosahexaenoic acid (DHA) levels may result in diversion of methyl groups towards DNA in the one carbon metabolic pathway ultimately resulting in DNA methylation. This study was designed to examine the effect of normal and excess folic acid in the absence and presence of vitamin B12 deficiency on global methylation patterns in the placenta. Further, the effect of maternal omega 3 fatty acid supplementation on the above vitamin B12 deficient diets was also examined. Our results suggest maternal folic acid supplementation in the absence of vitamin B12 lowers plasma and placental DHA levels (p<0.05) and reduces global DNA methylation levels (p<0.05). When this group was supplemented with omega 3 fatty acids there was an increase in placental DHA levels and subsequently DNA methylation levels revert back to the levels of the control group. Our results suggest for the first time that DHA plays an important role in one carbon metabolism thereby influencing global DNA methylation in the placenta.
Psychiatry Research-neuroimaging | 2010
Anvita Kale; Nilesh M Naphade; Swati Sapkale; Marellasv Kamaraju; Anilkumar Pillai; Sadhana Joshi; Sahebarao P. Mahadik
Abnormal one-carbon metabolism has long been suggested as one of the mechanisms for neuropathology and psychopathology of schizophrenia. Variable levels of components of one-carbon metabolism (folic acid and vitamin B12) and consequent altered levels of homocysteine and phospholipid docosahexaenoic acid (DHA) have been independently reported, mostly in medicated patients. This study examined the simultaneous levels of these key components of one-carbon metabolism and its consequences in unique, medication-naïve first-episode psychotic patients (FEP, n=31) and healthy controls (HC, n=48) matched for confounds such as race, diet and lifestyle to reduce the variability. Significantly lower levels of folate and vitamin B12 in plasma and folate in red blood cells were observed in FEP compared to HC. These reductions paralleled the significant increase in plasma homocysteine and cortisol levels. Significantly reduced levels of membrane DHA were also observed in FEP compared to HC. This study, using a unique cohort, provided a broader mechanism (disturbed folic acid-vitamin B12-DHA balance) of altered one-carbon metabolism and one of its key consequential components, an increased homocysteine level that together with cortisol, can contribute to the neuropathology of psychosis. These data may have important implications for the amelioration of psychopathology in schizophrenia.
The International Journal of Neuropsychopharmacology | 2010
Anilkumar Pillai; Anvita Kale; Sadhana Joshi; Nilesh M Naphade; M. S. V. K Raju; Henry Nasrallah; Sahebarao P. Mahadik
Brain-derived neurotrophic factor (BDNF), which plays an important role in neurodevelopmental plasticity and cognitive performance, has been implicated in neuropsychopathology of schizophrenia. We examined the levels of both cerebrospinal fluid (CSF) and plasma BDNF concomitantly in drug-naive first-episode psychotic (FEP) subjects with ELISA to determine if these levels were different from control values and if any correlation exists between CSF and plasma BDNF levels. A significant reduction in BDNF protein levels was observed in both plasma and CSF of FEP subjects compared to controls. BDNF levels showed significant negative correlation with the scores of baseline PANSS positive symptom subscales. In addition, there was a significant positive correlation between plasma and CSF BDNF levels in FEP subjects. The parallel changes in BDNF levels in plasma and CSF indicate that plasma BDNF levels reflect the brain changes in BDNF levels in schizophrenia.
Brain & Development | 2012
Suchitra Roy; Anvita Kale; Kamini Dangat; Pratiksha Sable; Asmita Kulkarni; Sadhana Joshi
Altered maternal micronutrients (folic acid, vitamin B(12)) are suggested to be at the heart of intra-uterine programming of adult diseases. We have recently described interactions of folic acid, vitamin B(12) and docosahexaenoic acid in one carbon metabolism that is considered to play a key role in regulation oxidative stress and chromatin methylation. However its impact on fetal oxidative stress and brain fatty acid levels has been relatively unexplored. The present study examined the effect of imbalance in maternal micronutrients (folic acid and vitamin B(12)) and maternal omega 3 fatty acid supplementation on oxidative stress parameters and brain fatty acids and in the offspring at birth. Pregnant female rats were divided into six groups at two levels of folic acid both in the presence and absence of vitamin B(12). Both the vitamin B(12) deficient groups were supplemented with omega 3 fatty acid. Oxidative stress marker (malondialdehyde) and polyunsaturated fatty acid profiles in plasma and brain were analyzed in dam and offspring at d20. Our results for the first time indicate that imbalance in maternal micronutrients (excess maternal folic acid supplementation on a B(12) deficient diet) increases (p<0.01) oxidative stress in both mother and pups. This increased maternal oxidative stress resulted in lower (p<0.01) fetal brain DHA levels. Omega 3 fatty acid supplementation was able to restore (p<0.05) the levels of brain DHA in both the vitamin B(12) deficient groups. Our data has implications for implications for neurodevelopmental disorders since micronutrients and DHA are important modulators for neural functioning.
Schizophrenia Research | 2008
Anvita Kale; Sadhana Joshi; Nilesh M Naphade; Swati Sapkale; M. S. V. K Raju; Anilkumar Pillai; Henry Nasrallah; Sahebarao P. Mahadik
Variable levels of essential polyunsaturated fatty acids (EPUFAs) reported in schizophrenia are likely due to differences in age, sex, ethnicity, diet, life style and treatments. The present study examined the EPUFAs levels in plasma, RBC and CSF in never-medicated first-episode psychotic patients and normal controls matched for ethnicity, diet and life style. The plasma EPUFAs levels were similar in both groups. Among the EPUFAs enriched in the brain, predominantly docosahexaenoic acid (DHA) levels were lower in RBC (p=<0.01) whereas higher in CSF (p=<0.01) in male>female patients. This altered DHA metabolism may provide clues for neuropathology and treatment of schizophrenia.
Neuroscience | 2011
Pratiksha Sable; Kamini Dangat; Anvita Kale; Sadhana Joshi
Folic acid fortification to pregnant women is suggested to mask vitamin B₁₂ deficiency leading to adverse neurologic consequences. The present study examines the effect of maternal folic acid supplementation at normal and excess levels both in the presence and absence of vitamin B₁₂ on levels and expression of brain neurotrophins in Wistar Albino rats. Pregnant female rats were assigned to six dietary groups with varying levels of folic acid and vitamin B₁₂, that is, (NFB: 2 mg folic acid+B₁₂; NFBD: 2 mg folic acid-B₁₂; EFB: 8 mg folic acid+B₁₂; EFBD: 8 mg folic acid-B₁₂; NFBDO: 2 mg folic acid-B₁₂+DHA and EFBDO: 8 mg folic acid-B₁₂+DHA). On day 20 of gestation pup brain samples were collected to assess protein and mRNA levels of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF). Brain BDNF protein and mRNA levels were reduced (P<0.01 for both) in the EFBD group as compared to control. However, NGF protein levels were reduced (P<0.05) only in the EFBD group in comparison to EFB and control. Maternal supplementation of DHA improved pup brain NGF protein levels only in the NFBDO (P<0.05) and EFBDO (P<0.05) groups compared to NFBD and EFBD respectively. Our results suggest that maternal micronutrients during pregnancy play an important role in regulating protein and mRNA levels of neurotrophins. Maternal DHA supplementation to a micronutrient imbalanced diet could ameliorate the negative effects only for NGF but not for BDNF.
BioMed Research International | 2014
Vinita Khot; Anvita Kale; Asmita Joshi; Preeti Chavan-Gautam; Sadhana Joshi
We have reported that folic acid, vitamin B12, and omega-3 fatty acids are interlinked in the one carbon cycle and have implications for fetal programming. Our earlier studies demonstrate that an imbalance in maternal micronutrients influence long chain polyunsaturated fatty acid metabolism and global methylation in rat placenta. We hypothesize that these changes are mediated through micronutrient dependent regulation of enzymes in one carbon cycle. Pregnant dams were assigned to six dietary groups with varying folic acid and vitamin B12 levels. Vitamin B12 deficient groups were supplemented with omega-3 fatty acid. Placental mRNA levels of enzymes, levels of phospholipids, and glutathione were determined. Results suggest that maternal micronutrient imbalance (excess folic acid with vitamin B12 deficiency) leads to lower mRNA levels of methylene tetrahydrofolate reductase (MTHFR) and methionine synthase , but higher cystathionine b-synthase (CBS) and Phosphatidylethanolamine-N-methyltransferase (PEMT) as compared to control. Omega-3 supplementation normalized CBS and MTHFR mRNA levels. Increased placental phosphatidylethanolamine (PE), phosphatidylcholine (PC), in the same group was also observed. Our data suggests that adverse effects of a maternal micronutrient imbalanced diet may be due to differential regulation of key genes encoding enzymes in one carbon cycle and omega-3 supplementation may ameliorate most of these changes.
Metabolism-clinical and Experimental | 2013
Pratiksha Sable; Anvita Kale; Sadhana Joshi
OBJECTIVE Our earlier studies show that maternal diets imbalanced in micronutrients like folic acid and vitamin B12 reduced brain docosahexaenoic acid (DHA) and brain derived neurotrophic factor (BDNF) and nerve growth factor (NGF) in the offspring at birth and postnatal d21. This study followed the offspring till 3 months to examine the hypothesis that impaired brain neurotrophins at birth and d21 due to altered maternal micronutrients can be reversed by prenatal omega 3 fatty acid but not a postnatal control diet leading to altered cognition in adult life. MATERIALS AND METHODS Pregnant rats were divided into control and five treatment groups at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB and EFBD). Omega 3 fatty acid supplementation was given to the vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, 8 dams from each group were shifted to control and remaining continued on same diet. RESULTS Imbalance in maternal micronutrients up to 3months decreased DHA, BDNF and NGF in cortex and only BDNF in the hippocampus and impaired cognitive performance. Postnatal control diet normalized BDNF in the cortex but not the hippocampus and also altered cognitive performance. Prenatal omega 3 fatty acid supplementation normalized DHA, BDNF and NGF while long term supplementation was not beneficial only when micronutrients were imbalanced. CONCLUSION Patterns established at birth are not totally reversible by postnatal diets and give clues for planning intervention studies for improving brain functioning and cognitive abilities.
Nutritional Neuroscience | 2015
Pratiksha Sable; Karuna Randhir; Anvita Kale; Preeti Chavan-Gautam; Sadhana Joshi
Abstract Objectives Studies have established the association of maternal nutrition and increased risk for non-communicable diseases. It has been suggested that this involves epigenetic modifications in the genome. However, the role of maternal micronutrients in the one-carbon cycle in influencing brain development of the offspring through methylation is unexplored. It is also unclear whether epigenomic marks established during early development can be reversed by a postnatal diet. The present study reports the effect of maternal micronutrients and omega-3 fatty acids on global DNA methylation patterns in the brain of the Wistar rat offspring at three timepoints (at birth, postnatal day 21, and 3 months of age). Method Pregnant rats were divided into control (n = 8) and five treatment groups (n = 16 dams in each group) at two levels of folic acid (normal and excess folate) in the presence and absence of vitamin B12 (NFBD, EFB, and EFBD). Omega-3 fatty acid supplementation was given to vitamin B12 deficient groups (NFBDO and EFBDO). Following delivery, eight dams from each group were shifted to control diet and remaining continued on the same treatment diet. Results Our results demonstrate that maternal micronutrient imbalance results in global hypomethylation in the offspring brain at birth. At adult age the cortex of the offspring displayed hypermethylation as compared with control, in spite of a postnatal control diet. In contrast, prenatal omega-3 fatty acid supplementation was able to normalize methylation at 3 months of age. Discussion Our findings provide clues for the role of omega-3 fatty acids in reversing methylation patterns thereby highlighting its contribution in neuroprotection and cognition.