Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Amritesh Rai is active.

Publication


Featured researches published by Amritesh Rai.


ACS Nano | 2015

Field Effect Transistors with Current Saturation and Voltage Gain in Ultrathin ReS2

Chris M. Corbet; Connor McClellan; Amritesh Rai; Sushant Sonde; Emanuel Tutuc; Sanjay K. Banerjee

We report the fabrication and device characteristics of exfoliated, few-layer, dual-gated ReS2 field effect transistors (FETs). The ReS2 FETs display n-type behavior with a room temperature Ion/I(off) of 10(5). Many devices were studied with a maximum intrinsic mobility of 12 cm(2) · V(-1) · s(-1) at room temperature and 26 cm(2) · V(-1) · s(-1) at 77 K. The Cr/Au-ReS2 contact resistance determined using the transfer length method is gate-bias dependent and ranges from 175 kΩ · μm to 5 kΩ · μm, and shows an exponential dependence on back-gate voltage indicating Schottky barriers at the source and drain contacts. Dual-gated ReS2 FETs demonstrate current saturation, voltage gain, and a subthreshold swing of 148 mV/decade.


ACS Nano | 2015

High-Mobility Holes in Dual-Gated WSe2 Field-Effect Transistors

Hema C. P. Movva; Amritesh Rai; Sangwoo Kang; Kyounghwan Kim; Babak Fallahazad; Takashi Taniguchi; Kenji Watanabe; Emanuel Tutuc; Sanjay K. Banerjee

We demonstrate dual-gated p-type field-effect transistors (FETs) based on few-layer tungsten diselenide (WSe2) using high work-function platinum source/drain contacts and a hexagonal boron nitride top-gate dielectric. A device topology with contacts underneath the WSe2 results in p-FETs with ION/IOFF ratios exceeding 10(7) and contacts that remain ohmic down to cryogenic temperatures. The output characteristics show current saturation and gate tunable negative differential resistance. The devices show intrinsic hole mobilities around 140 cm(2)/(V s) at room temperature and approaching 4000 cm(2)/(V s) at 2 K. Temperature-dependent transport measurements show a metal-insulator transition, with an insulating phase at low densities and a metallic phase at high densities. The mobility shows a strong temperature dependence consistent with phonon scattering, and saturates at low temperatures, possibly limited by Coulomb scattering or defects.


Nano Letters | 2015

Radio Frequency Transistors and Circuits Based on CVD MoS2

Atresh Sanne; Rudresh Ghosh; Amritesh Rai; Maruthi N. Yogeesh; Seung Heon Shin; Ankit Sharma; Karalee Jarvis; Leo Mathew; Rajesh Rao; Deji Akinwande; Sanjay K. Banerjee

We report on the gigahertz radio frequency (RF) performance of chemical vapor deposited (CVD) monolayer MoS2 field-effect transistors (FETs). Initial DC characterizations of fabricated MoS2 FETs yielded current densities exceeding 200 μA/μm and maximum transconductance of 38 μS/μm. A contact resistance corrected low-field mobility of 55 cm(2)/(V s) was achieved. Radio frequency FETs were fabricated in the ground-signal-ground (GSG) layout, and standard de-embedding techniques were applied. Operating at the peak transconductance, we obtain short-circuit current-gain intrinsic cutoff frequency, fT, of 6.7 GHz and maximum intrinsic oscillation frequency, fmax, of 5.3 GHz for a device with a gate length of 250 nm. The MoS2 device afforded an extrinsic voltage gain Av of 6 dB at 100 MHz with voltage amplification until 3 GHz. With the as-measured frequency performance of CVD MoS2, we provide the first demonstration of a common-source (CS) amplifier with voltage gain of 14 dB and an active frequency mixer with conversion gain of -15 dB. Our results of gigahertz frequency performance as well as analog circuit operation show that large area CVD MoS2 may be suitable for industrial-scale electronic applications.


Advanced Materials | 2016

Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime.

Hsiao Yu Chang; Maruthi N. Yogeesh; Rudresh Ghosh; Amritesh Rai; Atresh Sanne; Shixuan Yang; Nanshu Lu; Sanjay K. Banerjee; Deji Akinwande

Flexible synthesized MoS2 transistors are advanced to perform at GHz speeds. An intrinsic cutoff frequency of 5.6 GHz is achieved and analog circuits are realized. Devices are mechanically robust for 10,000 bending cycles.


Applied Physics Letters | 2015

Top-gated chemical vapor deposited MoS2 field-effect transistors on Si3N4 substrates

Atresh Sanne; Rudresh Ghosh; Amritesh Rai; Hema C. P. Movva; Ankit Sharma; Rajesh Rao; Leo Mathew; Sanjay K. Banerjee

We report the electrical characteristics of chemical vapor deposited (CVD) monolayer molybdenum disulfide (MoS2) top-gated field-effect transistors (FETs) on silicon nitride (Si3N4) substrates. We show that Si3N4 substrates offer comparable electrical performance to thermally grown SiO2 substrates for MoS2 FETs, offering an attractive passivating substrate for transition-metal dichalcogenides (TMD) with a smooth surface morphology. Single-crystal MoS2 grains are grown via vapor transport process using solid precursors directly on low pressure CVD Si3N4, eliminating the need for transfer processes which degrade electrical performance. Monolayer top-gated MoS2 FETs with Al2O3 gate dielectric on Si3N4 achieve a room temperature mobility of 24 cm2/V s with Ion/Ioff current ratios exceeding 107. Using HfO2 as a gate dielectric, monolayer top-gated CVD MoS2 FETs on Si3N4 achieve current densities of 55 μA/μm and a transconductance of 6.12 μS/μm at Vtg of −5 V and Vds of 2 V. We observe an increase in mobility a...


ACS Applied Materials & Interfaces | 2016

Structural and Electrical Properties of MoTe2 and MoSe2 Grown by Molecular Beam Epitaxy

Anupam Roy; Hema C. P. Movva; Biswarup Satpati; Kyounghwan Kim; Rik Dey; Amritesh Rai; Tanmoy Pramanik; Samaresh Guchhait; Emanuel Tutuc; Sanjay K. Banerjee

We demonstrate the growth of thin films of molybdenum ditelluride and molybdenum diselenide on sapphire substrates by molecular beam epitaxy. In situ structural and chemical analyses reveal stoichiometric layered film growth with atomically smooth surface morphologies. Film growth along the (001) direction is confirmed by X-ray diffraction, and the crystalline nature of growth in the 2H phase is evident from Raman spectroscopy. Transmission electron microscopy is used to confirm the layered film structure and hexagonal arrangement of surface atoms. Temperature-dependent electrical measurements show an insulating behavior that agrees well with a two-dimensional variable-range hopping model, suggesting that transport in these films is dominated by localized charge-carrier states.


Applied Physics Letters | 2013

Two-dimensional weak anti-localization in Bi2Te3 thin film grown on Si(111)-(7 × 7) surface by molecular beam epitaxy

Anupam Roy; Samaresh Guchhait; Sushant Sonde; Rik Dey; Tanmoy Pramanik; Amritesh Rai; Hema C. P. Movva; Luigi Colombo; Sanjay K. Banerjee

We report on low temperature transport studies of Bi2Te3 topological insulator thin films grown on Si(111)-(7 × 7) surface by molecular beam epitaxy. A sharp increase in the magnetoresistance with magnetic field at low temperature indicates the existence of weak anti-localization. The measured weak anti-localization effect agrees well with the Hikami-Larkin-Nagaoka model, and the extracted phase coherence length shows a power-law dependence with temperature indicating the existence of a two-dimensional system. An insulating ground state has also been observed at low temperature showing a logarithmic divergence of the resistance that appears to be the influence of electron-electron interaction in a two-dimensional system.


Applied Physics Letters | 2015

Characteristics and mechanism study of cerium oxide based random access memories

Cheng Chih Hsieh; Anupam Roy; Amritesh Rai; Yao Feng Chang; Sanjay K. Banerjee

In this work, low operating voltage and high resistance ratio of different resistance states of binary transition metal oxide based resistive random access memories (RRAMs) are demonstrated. Binary transition metal oxides with high dielectric constant have been explored for RRAM application for years. However, CeOx is considered as a relatively new material to other dielectrics. Since research on CeOx based RRAM is still at preliminary stage, fundamental characteristics of RRAM such as scalability and mechanism studies need to be done before moving further. Here, we show very high operation window and low switching voltage of CeOx RRAMs and also compare electrical performance of Al/CeOx/Au system between different thin film deposition methods and discuss characteristics and resistive switching mechanism.


ACS Nano | 2015

Perpendicular magnetic anisotropy and spin glass-like behavior in molecular beam epitaxy grown chromium telluride thin films

Anupam Roy; Samaresh Guchhait; Rik Dey; Tanmoy Pramanik; Cheng Chih Hsieh; Amritesh Rai; Sanjay K. Banerjee

Reflection high-energy electron diffraction (RHEED), scanning tunneling microscopy (STM), vibrating sample magnetometry, and other physical property measurements are used to investigate the structure, morphology, magnetic, and magnetotransport properties of (001)-oriented Cr2Te3 thin films grown on Al2O3(0001) and Si(111)-(7×7) surfaces by molecular beam epitaxy. Streaky RHEED patterns indicate flat smooth film growth on both substrates. STM studies show the hexagonal arrangements of surface atoms. Determination of the lattice parameter from the atomically resolved STM image is consistent with the bulk crystal structures. Magnetic measurements show the film is ferromagnetic, having a Curie temperature of about 180 K, and a spin glass-like behavior was observed below 35 K. Magnetotransport measurements show the metallic nature of the film with a perpendicular magnetic anisotropy along the c-axis.


Nano Letters | 2016

Effects of Electrode Layer Band Structure on the Performance of Multilayer Graphene-hBN-Graphene Interlayer Tunnel Field Effect Transistors

Sangwoo Kang; Nitin Prasad; Hema C. P. Movva; Amritesh Rai; Kyounghwan Kim; Xuehao Mou; Takashi Taniguchi; Kenji Watanabe; Leonard F. Register; Emanuel Tutuc; Sanjay K. Banerjee

Interlayer tunnel field-effect transistors based on graphene and hexagonal boron nitride (hBN) have recently attracted much interest for their potential as beyond-CMOS devices. Using a recently developed method for fabricating rotationally aligned two-dimensional heterostructures, we show experimental results for devices with varying thicknesses and stacking order of the graphene electrode layers and also model the current-voltage behavior. We show that an increase in the graphene layer thickness results in narrower resonance. However, due to a simultaneous increase in the number of sub-bands and decrease of sub-band separation with an increase in thickness, the negative differential resistance peaks becomes less prominent and do not appear for certain conditions at room temperature. Also, we show that due to the unique band structure of odd number of layer Bernal-stacked graphene, the number of closely spaced resonance conditions increase, causing interference between neighboring resonance peaks. Although this can be avoided with even number of layer graphene, we find that in this case the bandgap opening present at high biases tend to broaden the resonance peaks.

Collaboration


Dive into the Amritesh Rai's collaboration.

Top Co-Authors

Avatar

Sanjay K. Banerjee

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Anupam Roy

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Hema C. P. Movva

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Emanuel Tutuc

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Leonard F. Register

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Rik Dey

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Samaresh Guchhait

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Sangwoo Kang

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Tanmoy Pramanik

University of Texas at Austin

View shared research outputs
Top Co-Authors

Avatar

Deji Akinwande

University of Texas at Austin

View shared research outputs
Researchain Logo
Decentralizing Knowledge